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Parkinson’s disease (PD) affects about 2-3% of the global population over 65 years of age and hence, it is the second most 
common neurodegenerative disorder in the world. This study explored the key genes and miRNA involved in PD. Microarray 
dataset (accession number GSE19587) comprising of two regions of medulla: dorsal motor nucleus of vagus (DMNV) and inferior 
olivary nucleus (ION) was downloaded from Gene Expression Omnibus (GEO) database. A total of 697 DEGs from ION (605  
up-regulated genes and 92 down-regulated genes) and 663 DEGs from DMNV (638 up-regulated genes and 25 down-regulated 
genes) were screened. These DEGs were found to be enriched in 46 (DMNV) and 24 (ION) pathways common in DAVID and 
Comparative Toxicogenomics Database. In PPI network analysis, IGF1 and CD44 were identified as hub genes in DMNV 
whereas, for ION, the hub genes identified were CSF2 and CD44. In TF-miRNA-target gene networks, an aggregate of 11 
transcription factors and 46 miRNA were observed to influence the target genes. In drug-gene interaction studies, CYP3A5 and 
ESR1 had higher connective degrees and hence, they might be novel druggable targets for Parkinson’s disease. 
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Parkinsonism is an umbrella term that describes any 
condition that shares similar symptoms associated 
with movement abnormalities. Parkinsonism was 
observed in different neurodegenerative conditions 
such as Parkinson's disease, corticobasal degeneration, 
dementia with Lewy bodies, Huntington's disease, 
Wilson's disease, etc1. Parkinson’s disease (PD) is a 
long term multi-system neurological disease 
characterized by early motor symptoms including 
tremor, slowness of movement (bradykinesia), rigidity 
and instability while walking2. As the disease 
progresses, more non-motor symptoms such as 
dementia become more common3. Even before the 
onset of motor symptoms, patients may experience 
difficulties such as anhedonia (inability to feel 
pleasure in activities that are usually enjoyable), 
mood associated problems, excessive sweating and 
constipation. These symptoms are collectively called 
as pre-motor symptoms4. PD affects about 2-3% of 
the global population over 65 years of age and hence, 
it is the second most common neurodegenerative 
disorder in the world5. In juvenile Parkinsonism, 

parkinsonian symptoms and signs can be observed in 
young individuals aged less than 21 years6. 

Numerous investigations on the pathogenesis of PD 
indicate two definitive hallmarks such as gradual 
loss of dopaminergic neurons in pars compacta of 
substantia nigra and the presence of Lewy body (protein 
inclusions) in the surviving neurons7. Even though the 
complete etiology of PD remains unknown, it was found 
that the majority of PD cases arise sporadically and may 
have associations with both genetic and environmental 
risk factors8. Moreover, the genetic basis of PD 
progression is well established and the most familial 
form of the disease have been commonly associated 
with six genes including PRKN, LRRK2, VPS35, SNCA, 
PINK1 and PARK79. Parkin gene (PRKN), encoding E3 
ubiquitin ligase parkin is involved in functions 
associated with quality control and turn over in 
mitochondria. The major role of parkin is the ligation of 
ubiquitin to amino acid lysine, an important post-
translational modification10. LRRK2 (Leucine-rich repeat 
kinase 2) encodes 2527 amino acid long protein called 
dardarin, is linked with various cellular processes 
like maintenance of cytoskeleton, degradation of 
autophagic protein and vesicle trafficking. In the case of 
PD, mutations leading to the up-regulation of LRRK2 
gene were observed and it was widely researched as a 
target to develop novel therapeutics11. Dardarin can 
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interact with the C-terminal R2 RING-finger domain of 
parkin and vice versa through the COR domain of 
dardarin. Hence, the co-expression of dardarin and 
parkin can cause an elevation in ubiquitination of 
cytoplasmic protein aggregates of dardarin. Also, 
mutants of LRRK2 were known to cause neuronal 
degeneration in primary neurons12. VPS35 (vacuolar 
protein sorting 35 gene) is a part of the retromer 
complex that recycles proteins by transporting from 
endosomes to trans-Golgi network. In multiple cases of 
PD, a single missense mutation AspD620Asn was 
widely observed. As the exact mechanism behind the 
role of mutant VPS35 in PD is not fully understood, it 
can only be hypothesized that mutations in VPS35 could 
lead to neurodegeneration by disrupting the receptor 
recycling process13. Synuclein (SNCA) gene encodes a 
140 amino acid long protein called alpha-synuclein and 
it is mainly responsible for maintaining a sufficient 
number of neurotransmitter filled synaptic vesicles in 
presynaptic terminals of neurons. Also, they play a vital 
role in the movement of microtubules, an important 
component of the cytoskeleton. Mutations in SNCA gene 
can give rise to abnormal alpha-synuclein in turn which 
can bring about neuronal death by affecting synaptic 
functions14. PINK1 encoding PTEN induced kinase 1 is 
involved in the protection of mitochondria from 
oxidative stress. Mutations in PINK1 are associated with 
mitochondrial dysfunction and progressive reduction of 
dopamine release over age in the PD population15. The 
gene PARK7 encodes protein deglycase DJ-1, which is 
hypothesized to play a crucial role in protecting various 
types of cells, especially brain cells from oxidative 
stress. The pathology of PD associated with PARK7 or 
DJ-1 remains largely undetermined as PARK7 
mutations are less frequent than other types including 
PRKN in PD16. 

Apart from these genes, many other genes and 
miRNAs are found to have a positive correlation with 
the progression of PD. Low-density lipoprotein 
receptor-related protein 10 encoded by gene LRP10 
has now emerged as a novel target for PD and it has 
potential implications towards molecular cascades 
involved in the pathogenic aggregation of alpha-
synuclein17. Small non-coding micro RNAs (miRNA) 
play a crucial role in regulating various metabolic 
pathways involved in the development and survival of 
nerve cells. Many genes associated with PD have  
mi-RNAs as regulatory elements. Studies suggested 
that two miRNAs (miR-7 and miR-153) act as 
regulatory elements of synuclein. In the normal 
population, miR-7 and miR-153 keep alpha-synuclein 

mRNA under negative control18. Aberrant changes in 
miRNA expression patterns in the PD population  
have been reported in multiple studies. For instance,  
miR-133b associated with the development of 
dopaminergic neurons was reported to be down-
regulated in mid-brain samples obtained from the PD 
population19. Another mi-RNA, miR-433 is linked to 
PD based on its binding activity towards the FGF20 
gene. Alterations in the binding of miR-433 to FGF20 
can elevate synuclein expression levels20-21. 

Identification of key genes and regulatory elements 
involved in PD progression can accelerate the process 
of developing new drugs or repurposing existing 
drugs to alleviate PD. For example, Amantadine, an 
anti-flu drug, is now widely used to treat PD22. In this 
study, microarray data obtained from NCBI’s 
(National Centre for Biotechnology Information) 
GEO (Gene Expression Omnibus) database was 
analyzed to identify differentially expressed genes 
(DEGs) in the inferior olivary nucleus (ION) and 
dorsal motor nucleus of the vagus (DMNV) of PD 
affected and normal individuals. Then DEGs were 
screened based on Gene Ontology functional (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways analysis. The potential DEGs 
involved in GO and KEGG pathway analysis were 
used further to construct protein-protein interaction 
(PPI) and mi-RNA-transcription factor (TF)-target 
gene regulatory networks. Finally, the druggable gene 
targets involved in PD progression were obtained 
based on the network modules identified in PPI 
networks. The gene targets identified in this study 
might offer new insight into the molecular mechanism 
of PD associated with ION and DMNV. Moreover, 
this study might provide novel targets for developing 
therapeutic agents against PD. 
 
Materials and Methods 
 
Data source 

In our study, microarray dataset (accession number 
GSE19587) was downloaded from NCBI’s GEO 
database (https://www.ncbi.nlm.nih.gov/geo/) and it 
contains expression profile of 22 samples including  
6 samples of PD affected inferior olivary nucleus,  
6 samples of PD affected dorsal motor nucleus of the 
vagus, 5 samples of normal inferior olivary nucleus 
and 5 samples of normal dorsal motor nucleus of the 
vagus. The samples were derived from individuals 
aged 74 to 84 years. The dataset was analyzed in the 
platform GPL571, which is the Affymetrix Human 
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Genome U133A 2.0 Array [HG-U133A_2]. It consists 
of more than 22,000 probe sets and 500,000 unique 
oligonucleotide features. 
 

Screening of DEGs 
The preprocessing of the dataset was done  

using R package oligo (version 1.50.0, https:// 
www. bioconductor.org/ packages/release/bioc/html/ 
oligo.html)23. The preprocessing of data constitute 
background correction, log transformation, quantile 
normalization (to equalize differences between the 
arrays) and probe normalization (to equalize 
differences within the probe sets). The RMA (Robust 
Multichip Average) method of oligo was used to 
perform data normalization. After data normalization, 
the differential gene expression analysis was carried 
out using the classical Bayesian method of limma 
(version 3.42.0, https://bioconductor.org/packages/ 
release/bioc/html/limma.html)24. For constructing 
volcano plots, R package Enhanced Volcano (version 
1.4.0, https://bioconductor.org/packages/ release/bioc/ 
html/EnhancedVolcano.html) was used25. The DEGs 
with p-value < 0.05, logFC ≥ 2 (for up-regulated 
genes) and logFC ≤ 2 (for down-regulated genes) 
were screened for further analysis. For constructing 
clustered heat maps, R package pheatmap (version 
1.0.12, https://www.rdocumentation.org/packages/ 
pheatmap/versions/1.0.12) was used26. 
 

Gene ontology and KEGG pathway analysis 
Online tool DAVID (Database for Annotation, 

Visualization and Integrated Discovery, version 6.8, 
https://david.ncifcrf.gov/home.jsp) was used to perform 
GO functional annotation and KEGG pathway 
enrichment analysis for screened DEGs27. The gene 
ontology functional annotation consists of three 
categories: Biology Process, Molecular Function and 
Cellular Component. The significant GO terms and 
KEGG pathways were selected on the basis of the  
P-value (<0.05) and gene count (≥ 2). In addition,  
the GOplot package of R (version 1.0.2, https:// 
wencke. github.io/) was used to visualize the results of 
functional analysis. 

The genes enriched in KEGG pathways were further 
screened by comparing it with PD associated pathways 
in the Comparative Toxicogenomics Database (CTD, 
http://ctdbase.org/). The pathways found in common 
between DAVID and CTD along with their associated 
genes were selected for performing further analysis. 
 

Protein-Protein Interaction networks construction 
In order to construct PPI networks for genes 

involved in common pathways, the STRING database 

(Search Tool for Retrieval of Interacting Genes, 
version 11.0, https://string-db.org/) was used. 
STRING is an online tool that comprises of both 
known and predicted protein-protein interactions28. 
The interactions with PPI score > 0.4 were considered 
significant and are selected to build PPI networks.  
For PPI network construction, Cytoscape software 
(version 3.7.2, https://cytoscape.org/) was used29. 
After network construction, the topological properties 
associated with the PPI network were determined 
using cytoNCA plugin of Cytoscape (version 2.1.6, 
http://apps.cytoscape.org/apps/cytonca)30. For centrality 
measurement, the network parameter was set as 
without weight. The node degree was used as a 
measure to screen hub genes from PPI networks. The 
network modules present within the PPI networks 
were screened using Cytoscape plugin MCODE 
(Multi-contrast delayed Enhancement, version  
1.5.1, http://apps.cytoscape.org/apps/mcode). MCODE 
clusters a network as per its topological properties to 
construct densely connected networks or network 
modules31. Network modules with score value ≥ 5 
were screened as significant modules. 
 
TF-miRNA-target gene interaction study 

To study the pairwise relationship between 
transcription factors and target genes in constructed PPI 
networks, iRegulon plugin of Cytoscape (version 1.3, 
http://apps.cytoscape.org/apps/iregulon) was used. The 
iRegulon plugin predicts transcription factor and its 
target through motif and track discovery method32. The 
parameters set in the analysis include minimum identity 
between orthologous genes (0.05) and maximum false 
discovery rate on motif similarity (0.001). Finally, 
transcription factors with normalized enrichment score 
(NES) > 4 were selected for further use. 

Prediction of miRNAs associated with screened 
DEGs was done using a web-based gene set analysis 
toolkit, WebGestalt (http://www.webgestalt.org/ 
option.php). The parameters selected for prediction 
include organism of interest: Homo sapiens, method of 
interest: Over-Representation Analysis (ORA), count: ≥ 
2 and p-value: <0.05. In addition, miRNAs linked with 
PD were obtained from Human microRNA Disease 
Database (HMDD, version 3.2, http://www.cuilab.cn/ 
hmdd)33. Then, TF-miRNA-target gene interaction 
networks were constructed in Cytoscape software. 
 
Drug-gene interaction prediction 

The drug-target gene interaction was predicted using 
a web-based resource, Drug-gene Interaction database 
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(DGIdb, version 3.0.2, http://www.dgidb.org/). DGIdb 
can predict the potential druggability of selected genes 
and drug-gene interactions34. In our study, genes 
represented in network modules were selected for the 
prediction of druggability and drug-gene interactions. 
The parameters selected are FDA approved drugs and 
immunotherapeutic agents. Finally, the results were 
visualized as networks in Cytoscape software. 
 
Results 
 
Screening of DEGs 

After normalizing the data, we have screened a 
total of 697 DEGs from ION and 663 DEGs from 
DMNV. In ION, 605 genes were up-regulated and  
92 genes were down-regulated. In DMNV, 638 genes 
were up-regulated and 25 genes were down-regulated 
(Suppl. Tables 1 and 2). Around 62 DEGs (61 up-
regulated and 1 down-regulated) were found common 

between ION and DMNV. The volcano plot and 
clustered heatmap of screened DEGs from ION and 
DMNV are displayed in (Fig. 1). 
 

Gene ontology and KEGG pathway analysis 
GO analysis indicated that the screened DEGs from 

ION and DMNV were enriched in 205 and 186 
functional terms, respectively, (Suppl. Tables 3 & 4). In 
ION, up-regulated genes were enriched in 167 
functional terms and down-regulated genes were 
enriched in 38 functional terms. In DMNV, up-regulated 
genes were enriched in 175 functional terms and down-
regulated genes were enriched in 11 functional terms. 
The majority of the functional terms in ION and DMNV 
were seen associated with the category biology process. 
With reference to the p-value, the most significant 
functional terms were found linked with cellular 
components. The GO plot and the corresponding 
Pheatmap for top most GO terms along with their genes 

 
 

Fig. 1 — The volcano plots (A & B) and clustered heatmaps (C & D) of differentially expressed genes related to Parkinson’s disease.
(A) and (C) depict the data of DMNV, while (B) and (D) depict the data of ION 
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were shown in (Fig. 2). The top most GO terms in ION 
were composed of GO:0005887 (integral component of 
plasma membrane), GO:0005576 (extracellular region), 
GO:0005615 (extracellular space), etc. In DMNV, the 
top most GO terms were GO:0005887 (integral component 
of plasma membrane), GO:0009611 (response to 
wounding), GO:0008283 (cell proliferation), etc. 

KEGG pathway analysis showed that the screened 
DEGs from ION and DMNV were enriched in 25 and 
31 pathways (Suppl. Table 5). In ION, up-regulated 
genes were enriched in 13 pathways and down-
regulated genes were enriched in 12 pathways. In 
DMNV, up-regulated genes were enriched in 26 
pathways and down-regulated genes were enriched  
in 5 pathways. The significant pathways in ION 
comprised of hsa04512 (ECM-receptor interaction), 

hsa04151 (PI3K-Akt signaling pathway), hsa04080 
(Neuroactive ligand-receptor interaction), etc. The 
significant pathways in DMNV contained hsa04080 
(Neuroactive ligand-receptor interaction), hsa04151 
(PI3K-Akt signaling pathway), hsa04917 (Prolactin 
signaling pathway), etc. The top 10 GO terms and 
pathways associated with screened DEGs along with 
their p-value are depicted in (Fig. 3). 

In the CTD database, we have screened around  
249 pathways associated with Parkinson's  
disease. Our screened DEGs from ION and  
DMNV were represented in 24 and 46 pathways in 
the CTD database. Among these pathways, 14 and  
28 pathways belonged to up-regulated genes in  
ION and DMNV. For down-regulated genes in ION 
and DMNV, we have found around 10 and 18 

 
 

Fig. 2 — Circos plots (A & B) representing links between DEGs and GO annotation terms that are repeatedly enriched along with the
heatmaps (C & D) of DEGs shown in circos plot. Red boxes indicate up-regulated DEGs, while blue boxes indicate down-regulated 
DEGs. (A) and (C) illustrate the data of DMNV, whereas, (B) and (D) illustrate the data of ION 



INDIAN J. BIOCHEM. BIOPHYS., VOL. 59, JANUARY 2022 
 
 

44

pathways associated with PD in the CTD database 
(Suppl. Table 6) 
 

PPI networks and gene modules 
For PPI network construction; we have screened 

the DGEs enriched in common pathways. It contains a 
total of 84 DEGs in ION (68 up-regulated genes and 
16 down-regulated genes) and 114 DEGs in DMNV 
(111 up-regulated genes and 3 down-regulated genes). 
For ION, the constructed PPI network consisted of 71 
nodes and 225 edges. In the case of DMNV, the PPI 
network consisted of 101 nodes and 408 edges. After 
determining the connective degrees of genes in the 
PPI network, we had found that CSF2 (Colony 
stimulating factor 2) and LEP (leptin) had higher 
connective degrees (CSF2, degree = 20 and LEP, 
degree = 19) than other genes in ION. Similarly, we 
had found that IGF1 (Insulin like growth factor 1) and 
CD44 (Cluster of differentiation 44) had higher 

connective degrees (IGF1, degree = 29 and CD44, 
degree = 24) than other genes in DMNV.  

After network analysis, we have found functional 
modules in constructed PPI networks using the 
MCODE plugin (Suppl. Table 7). For ION, one gene 
module (module 1) consisted of 7 nodes and 21 edges 
with a score value of 7.000 were obtained. In that 
module, DRD2 (Dopamine receptor D2) was a hub 
gene with a connective degree of 11. In the case of 
DMNV, a total of three network modules were 
observed. The first module (module 2a) consisted of 
16 nodes and 81 edges (score = 10.800), in which 
GNGT1 (Guanine nucleotide-binding protein G(T) 
subunit gamma-T1) was a hub gene (degree = 23). 
The second module (module 2b) consisted of 19 nodes 
and 45 edges (score = 5.000) with CD44 (Cluster of 
differentiation 44) as a hub gene (degree = 24). The 
third network module (module 2c) consisted of  

 
 

Fig. 3 — Gene ontology function (A & B) and KEGG pathway analysis (C & D) of differentially expressed genes. “*” indicates pathways 
that are not existed in Comparative Toxicogenomics Database. (A) and (C) represent the data of DMNV, while (B) and (D) represent the
data of ION 
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5 nodes and 10 edges (score = 5.000) with UGT1A8 
(UDP glucuronosyltransferase family 1 member A8) 
as a hub gene (degree = 7). The PPI network of ION 
and DMNV with their corresponding gene modules 
are illustrated in (Fig. 4). 
 

TF-miRNA-gene target networks 
TF-miRNA-gene target networks constructed for 

ION and DMNV (Suppl. Table 8) are shown in  
(Fig. 5). The TF-miRNA-gene target network of  
ION consisted of 82 nodes (6 transcription factors,  
20 miRNA and 56 target genes) and 207 edges.  
The transcription factor comprised of DDX20 
(DEAD-box helicase 20), IKZF1 (IKAROS Family 
Zinc Finger 1), SPIB (Spi-B Transcription Factor), 

NKX2-5 (NK2 Homeobox 5), YY1 (Yin Yang 1) and 
ESRRA (Estrogen Related Receptor Alpha). Some of 
the important miRNAs provided by WebGestalt 
included miR-29a (degree = 7), miR-29b (degree = 7), 
miR-29c (degree = 7), etc. In addition, 2 micro RNA 
precursors such as let-7e (degree = 6) and let-7g 
(degree = 6) were existed in Human microRNA 
Disease Database. The hub genes in TF-miRNA-gene 
target network of ION were DDX20 (degree = 25), 
IKZF1 (degree = 24) and SPIB (degree = 23). 

In the case of DMNV, the TF-miRNA-gene target 
network consisted of 85 nodes (5 transcription factors, 
26 miRNA and 54 target genes) and 188 edges. The 
transcription factors in the network included DDX4 

 
 

Fig. 4 — Protein-Protein Interaction networks (A & B) and their corresponding gene modules (C-F). Circle indicates up-regulated genes 
and rhombus indicates down-regulated genes. (A) depict the data of DMNV, while (B) depict the data of ION. (C-E) represents gene 
modules 2a, 2b and 2c, whereas (F) represents module 1. Node size is proportional to the degree. A large node indicates higher degree 
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(DEAD-box helicase 4), FOXM1 (Forkhead Box M1), 
NFIC (Nuclear Factor I C), PHLDA2 (Pleckstrin 
Homology Like Domain Family A Member 2) and 
NR2F2 (Nuclear Receptor Subfamily 2 Group F 
Member 2). Among the miRNAs, the miRNA with 
higher connective degrees included miR-148a (degree 
= 5), miR-148b (degree = 5), miR-152 (degree = 5), etc. 
Moreover, miR-34b (degree = 4), miR-9 (degree = 4) 
and miR-10a (degree = 3) had also existed in Human 

microRNA Disease Database. Among the nodes, 
transcription factor, DDX4 was observed to be a hub 
gene with highest connective degree (degree = 29). 
 

Drug-gene interactions 
For ION and DMNV, an aggregate of 24 drug-gene 

interactions was predicted in DGIdb database and it 
includes 16 genes and 20 drugs (Fig. 6). The major type 
of interactions observed between the selected genes and 
identified drugs were antagonist, agonist, inhibitor and 

 
 

Fig. 5 — TF-miRNA-target gene networks of (A) DMNV; and (B) ION. Circles represent target genes, hexagons represent transcription factors
and triangles represent miRNA. Triangles with black border indicate the existence of miRNA in Human microRNA Disease Database 

 

 
 
Fig. 6 — Drug gene interaction networks. Orange circles represent DEGs of DMNV, green circles represent DEGs of ION and yellow
squares represent the drug 
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anti-body/inhibitor. Based on their connective degrees, 
CYP3A5 (Cytochrome P450 Family 3 Subfamily A 
Member 5, degree = 4), ESR1 (Estrogen Receptor 1, 
degree = 3) of DMNV might be potentially druggable 
genes for PD. In the case of ION, no significant drug-
gene interactions were found. 
 

Discussion 
PD is a clinical illness that manifests itself as a 

neurodegenerative disorder. The perception of PD as 
just the movement disorder is void as it accompanies 
a plethora of symptoms that are not associated with 
movements such as depression, sleep disorders, 
cognitive abnormalities, etc. Even with effective 
therapeutic interventions such as L-DOPA (dopamine) 
treatment, deep brain stimulation, etc., PD is still 
incurable5. Hence, the search for novel therapeutic 
targets and therapies for PD remains persistent. 
Recently, MCL1 (apoptotic regulator of BCL2 family) 
was suggested as a new therapeutic target for PD35. 
This suggestion was made based on the fact that a 
reduction in dopaminergic neurons because of the 
depletion of MCL1 was observed in the parkin 
knockout mouse. Hence, enhancing MCL1 could be 
beneficial as it can reduce the mortality of 
dopaminergic neurons by inhibiting proapoptotic 
BCL2 factors36. Motor symptoms associated with PD 
are largely due to the loss of dopaminergic neurons in 
the substantia nigra pars compacta. While regions of 
basal ganglia are widely explored for their role in PD 
progression, only a little focus in this concern is 
offered towards other regions of the brain, especially 
medullar regions. MRI studies demonstrate that the 
brain stem region DMNV was differentially affected 
in PD. So, in our study, we analyzed the microarray 
expression profile of DMNV and ION in the nearby 
medullar region to extract possible biomarkers and 
druggable genes for PD, as affected DMNV was 
linked with pre-motor symptoms of PD37.  

The majority of DEGs in both ION and DMNV were 
up-regulated and are enriched in common pathways 
such as Neuroactive ligand-receptor interaction, PI3K-
Akt signaling pathway, Rap1 signaling pathway,  
etc. These pathways were also represented in the  
CTD database. The genes associated with neuroactive 
ligand-receptor interaction pathways include DRD1 and 
DRD2. Dopamine receptor D1, encoded by DRD1 is 
responsible for neuronal growth and development while, 
Dopamine receptor D2, encoded by DRD2 plays a 
crucial role in the regulation of synthesis and utilization 
of dopamine38. Dysregulation in DRD1 and DRD2 

expression might lead to an increase in neuronal 
mortality. Although most of the parasympathetic 
preganglionic motor neurons are cholinergic, some of 
the neurons of the dorsal motor nucleus of the vagus are 
dopaminergic39. Hence, dopaminergic neurons could be 
affected by dysregulation of DRD1 and DRD2 in PD. In 
south indian population, the genetic variants of DRD2 
along with COMT (Catechol O-methyl transferase) and 
MAOB (Monoamine oxidase B) loci increases the 
suscepability to PD40. Down-regulated DEGs in DMNV 
were enriched in pathways such as Parkinson's  
disease (hsa05012) and Alzheimer’s disease (hsa05010). 
NADH: ubiquinone oxidoreductase subunit B7 
(NDUFB7), NADH:ubiquinone oxidoreductase subunit 
A13 (NDUFA13) and cytochrome c oxidase subunit 4I1 
(COX4I1) are the down-regulated DEGs in DMNV 
associated with PD. Malfunctions in mitochondrial 
complexes are well documented in PD cases especially 
in complex I. Also, studies indicate the presence  
of oxidatively damaged mitochondrial complex I  
and are functionally impaired41. Hence, variants in 
mitochondrial complex I genes or their altered 
expression could increase the risk of developing PD. 

In PPI network analysis, IGF1 and CD44 were 
identified as hub genes in DMNV. Insulin-like growth 
factor 1 (IGF1) is known to have neuroprotective 
effects and many studies indicated the presence of 
IGF1 overexpressing neural progenitor cells in PD to 
protect dopaminergic neurons42. In TF-miRNA-target 
gene networks, we have identified 11 transcription 
factors that could be associated with PD progression 
in DMNV and ION. Among these TFs, DDX4 of 
DMNV had the highest score (>5). YY1 (Yin Yang 1) 
of DMNV plays an important role in nerve cell 
proliferation and has neuroprotective effects. Apart 
from transcription factors, miRNA also have 
important functions related to the regulation of gene 
expression in PD. In our study, we have found a total 
of 26 miRNA in DMNV and 20 miRNA in ION were 
associated with the screened DEGs. Among these 
miRNA, miR-34b was found to be down-regulated in 
the early stage of PD and it is linked to demodulation 
of mitochondrial function21. In addition, we have 
discovered that CYP3A5 and ESR1 might be potential 
therapeutic targets for PD based on drug-gene 
interaction studies. CYP3A5 is one of the important 
genes involved in the metabolism of L-DOPA. The 
presence of CYP3A5 mRNA in extrahepatic tissues 
(including various regions of the brain such as mid 
brain, basal ganglia, etc.) was reported and it might 
have a role in clearing toxins from the brain43. Studies 
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indicated that ESR1 and ESR2 polymorphisms have a 
significant association with altered risk of PD44. So, 
we believe that our findings could provide insight into 
the molecular pathology of PD pertaining to DMNV 
and ION. Also, the gene predicted from this study can 
be subjected to further in silico evaluations45. 
 

Conclusion 
In our study, we have identified a total of 697 

genes in ION and 663 genes in DMNV were 
differentially expressed in PD when compared to 
normal individuals. In the PPI networks constructed, 
IGF1 and CD44 for DMNV similarly, CSF2 and LEP 
for ION were found to be the hub genes and could 
play an important role in PD progression. In  
TF-miRNA-target gene networks, an aggregate of 11 
transcription factors and 46 miRNA were observed to 
influence the target genes. In addition, we have 
discovered that CYP3A5 and ESR1 might be potential 
therapeutic targets for PD. Furthermore, experimental 
studies are required to be made to get a deeper insight 
into the role of these genes in PD. 
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