Supplementary Information

Synthesis, in vitro biological evaluation and molecular docking study of coumarin-1,4-dihydropyridine derivatives as potent anti-inflammatory agents

Jyoti M Madar ${ }^{\text {a }}$, Lokesh A Shastri**, Samundeeswari L Shastri ${ }^{\text {a }}$, Megharaja Holiyachi ${ }^{\text {a }}$, Nirmala S Naik ${ }^{\text {a }}$, Parashuram Gudimani ${ }^{\mathrm{a}}$, Varsha Pawar ${ }^{\mathrm{a}}$, Arun K Shettar ${ }^{\text {b }}$, Shrinivas D Joshi ${ }^{\mathrm{c}}$ \& Vinay A Sungar ${ }^{\mathrm{d}}$
${ }^{\text {a }}$ Department of Chemistry, Karnatak University, Dharwad 580 003, India
${ }^{\mathrm{b}}$ PG Department of Studies and Research in Biotechnology and Bioinformatics Akkamahadevi Women's University Vijayapure 586 108, India
${ }^{c}$ Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T.'s College of Pharmacy, Sangolli Rayanna Nagar, Dharwad 580 002, India
${ }^{\mathrm{d}}$ Department of Chemistry, G.S.S. College, Belagavi 590 006, India
E-mail: drlashastri@kud.ac.in

Received 26 May 2020; accepted (revised) 27 October 2021

Chemical shift in $\boldsymbol{\delta} \mathbf{p p m} \quad$ Structural information

$2.45(\mathrm{~s}, 3 \mathrm{H})$	$: \mathrm{C}_{6}-\mathrm{CH}_{3}$ of coumarin
$3.41(\mathrm{~s}, 3 \mathrm{H})$	$: \mathrm{OCH}_{3}$ of ester
$3.51(\mathrm{~s}, 3 \mathrm{H})$	$: \mathrm{OCH}_{3}$ of ester
$5.18(\mathrm{~s}, 1 \mathrm{H})$	$: \mathrm{C}_{4}-\mathrm{CH}$ of DHP
$5.87(\mathrm{~s}, 2 \mathrm{H})$	$:-\mathrm{NH}_{2}$ of DHP
$6.13(\mathrm{~s}, 1 \mathrm{H})$	$: \mathrm{C}_{3}-\mathrm{H}$ of coumarin
$7.32(\mathrm{~m}, 5 \mathrm{H})$	$:-\mathrm{CH}$ of Phenyl ring
$7.46(\mathrm{~s}, 1 \mathrm{H})$	$: \mathrm{C}_{5}-\mathrm{H}$ of coumarin
$7.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J=}=8 \mathrm{~Hz})$	$: \mathrm{C}_{7}-\mathrm{H}$ of coumarin
$8.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J=}=8 \mathrm{~Hz})$	$: \mathrm{C}_{8}-\mathrm{H}$ of coumarin

Figure S1. Assignment of chemical shift and coupling constant of compound 6a

Chemical shift in $\boldsymbol{\delta} \mathbf{p p m} \quad$ Structural information

21.55
52.71
53.14
33.73
117.47
161.10
163.13
164.90
: $\mathrm{C}_{6}-\mathrm{CH}_{3}$ of coumarin
: OCH_{3} of ester
: OCH_{3} of ester
: C_{4}-CH of DHP
: CN
: CO of coumarin
: CO of ester
: CO of ester

Figure S2. Assignment of ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shift of compound $\mathbf{6 a}$

3.3. Data

3.3.1. Dimethy 6-amino-5-cyano-4-(6-methyl-2-oxo-2H-chromen-4-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6a)

The compound 6a obtained from 6-methyl-2-oxo-2H-chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), aniline (1.0 mmol). Yellow solid; Yield: 85%; mp : $268-270{ }^{\circ} \mathrm{C}$; IR (KBr): 3423, 2180, 1753 and $1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta \mathrm{ppm}$: $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6}-\mathrm{CH}_{3}\right.$ of coumarin), $3.35\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $3.45\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), 5.12(s, $1 \mathrm{H}, \mathrm{CH}$ of dihydropyridine), $5.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), $7.26(\mathrm{dd}$, $1 \mathrm{H}, J=9.2 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{C}_{7}-\mathrm{H}$ of coumarin), $7.25-7.27\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}\right.$ of phenyl ring), $7.49\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5}-\right.$ H of coumarin), $7.49-7.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\right.$ of phenyl ring), 8.02 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}$ of coumarin); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta \mathrm{ppm}: 21.55\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 33.73\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP), $52.75\left(\mathrm{OCH}_{3}\right.$ of ester), $53.14\left(\mathrm{OCH}_{3}\right.$ of ester), $57.46,102.71,111.80,114.62,115.65,117.47(\mathrm{CN}), 120.88$, $125.66,126.05,130.33,130.75,135.04,135.49,144.02,144.17,152.54,154.24,159.11,159.49$, 161.10 (CO of coumarin), 163.13 (CO of ester), 164.90 (CO of ester); GC-MS (m / z): $471\left(\mathrm{M}^{+}\right)$.

3.3.2. Dimethyl 6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(6-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6b)

The compound 6b obtained from 6-methyl-2-oxo-2H-chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), 3,4-dimethylamine (1.0 mmol). Gray solid; Yield: 87%; mp: 268-270 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3413, 2185, 1750 and $1711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta$ ppm: $2.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{3} \& \mathrm{C}_{4}-\mathrm{CH}_{3}\right.$ of phenyl ring), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6}-\mathrm{CH}_{3}\right.$ of coumarin), $3.47(\mathrm{~s}$, $3 \mathrm{H},-\mathrm{OCH}_{3}$ of ester), $3.55\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $4.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ of dihydropyridine), $6.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), $7.04\left(\mathrm{dd}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{C}_{7}-\mathrm{H}\right.$ of coumarin), 7.07 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}$ of coumarin), $7.19(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}$ of phenyl ring), $7.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}$, $\mathrm{C}_{8}-\mathrm{H}$ of coumarin); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta \mathrm{ppm}: 19.74\left(\mathrm{C}_{3}-\mathrm{CH}_{3}\right.$ of phenyl), 19.86 $\left(\left(\mathrm{C}_{4^{-}} \mathrm{CH}_{3}\right.\right.$ of phenyl)), 21.73($\left.\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 32.87\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP$), 52.50\left(\mathrm{OCH}_{3}\right.$ of ester $)$, $52.88\left(\mathrm{OCH}_{3}\right.$ of ester), $59.15,99.99,102.43,112.81,115.52,117.55(\mathrm{CN}), 120.13,124.50$, $125.77,127.45,130.74,131.15,140.12,143.66,143.88,151.36,153.11,154.28,158.61$, 162.25(CO of coumarin), 162.94(CO of ester), 164.83(CO of ester); Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 67.33; H, 5.04; N, 8.41. Found: C, 67.36; H, 5.02; N, 8.44. GC-MS (m/z): $499\left(\mathrm{M}^{+}\right)$.

3.3.3. Dimethyl-6-amino-1-(4-chlorophenyl)-5-cyano-4-(6-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6c)

The compound $6 \mathbf{c}$ obtained from 6 -methyl-2-oxo- 2 H -chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), 4-chlorobenzenamine (1.0 mmol). Gray solid; Yield: 83%; mp: 252-254 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3346, 2185, 1750 and $1700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}) δ ppm: $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6}-\mathrm{CH}_{3}\right.$ of coumarin), $3.43\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $3.62(\mathrm{~s}, 3 \mathrm{H},-$ OCH_{3} of ester), $4.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$ of dihydropyridine), $6.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), 7.15 (dd, $1 \mathrm{H}, J=8 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{C}_{7}-\mathrm{H}$ of coumarin), $7.22\left(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right.$ of coumarin), $7.27\left(\mathrm{~d}, 4 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{CH}\right.$ of phenyl ring), $7.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}-$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta \mathrm{ppm}: 22.54\left(\mathrm{C}_{6}-\mathrm{CH}_{3}\right), 33.27\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP$), 51.91\left(\mathrm{OCH}_{3}\right.$ of ester), $52.31\left(\mathrm{OCH}_{3}\right.$ of ester), $58.25,100.19,105.23,115.57,117.02,117.85(\mathrm{CN}), 119.34$, $123.21,125.37,130.64,132.27,139.45,141.27,144.67,151.36,155.04,157.11,161.24(\mathrm{CO}$ of coumarin), 163.17(CO of ester), 165.23(CO of ester); Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{6}$: C, 61.73; H, 3.98; N, 8.31. Found: C, 61.78; H, 3.96; N, 8.36. GC-MS (m/z): $505\left(\mathrm{M}^{+}\right)$.

3.3.4. Dimethyl 6-amino-5-cyano-4-(7-methyl-2-oxo-2H-chromen-4-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6d)

The compound $\mathbf{6 d}$ obtained from 7-methyl-2-oxo-2H-chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), aniline (1.0 mmol). Cream solid; Yield: 86%; mp: $238-232{ }^{\circ} \mathrm{C}$; IR (KBr): 3432, 2178, 1749 and $1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta \mathrm{ppm}$: $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{7}-\mathrm{CH}_{3}\right.$ of coumarin), $3.42\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $3.48\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $5.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$ of dihydropyridine), $5.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), $7.21(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}$ of coumarin), $7.23-7.29\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}\right.$ of phenyl ring), $7.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right.$ of coumarin), $7.52-7.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\right.$ of phenyl ring), $7.89\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta \mathrm{ppm}: 23.13\left(\mathrm{C}_{7}-\mathrm{CH}_{3}\right), 35.02\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP), $53.17\left(\mathrm{OCH}_{3}\right.$ of ester), $54.35\left(\mathrm{OCH}_{3}\right.$ of ester), $56.08,101.11,113.20,113.87,115.67,116.46(\mathrm{CN}), 119.14$, 121.76, 128.15, 131.47, 133.27, 135.19, 137.49, 142.49, 143.07, 151.62, 155.17, 157.22, 158.45, 162.87(CO of coumarin), 163.72(CO of ester), 165.49(CO of ester); Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 66.24; H, 4.49; N, 8.91. Found: C, 66.26; H, 4.48; N, 8.94. GC-MS (m/z):471 (${ }^{+}$).

3.3.5. Dimethyl 6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(7-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6e)

The compound 6e obtained from 7-methyl-2-oxo-2H-chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), 3,4-dimethylamine (1.0 mmol). Gray solid; Yield: 89%; mp: 222-224 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3432, 2175, 1754 and $1718 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta \mathrm{ppm}: 2.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{3} \& \mathrm{C}_{4}-\mathrm{CH}_{3}\right.$ of phenyl ring), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{7}-\mathrm{CH}_{3}\right.$ of coumarin), 3.48(s, $3 \mathrm{H},-\mathrm{OCH}_{3}$ of ester), $3.57\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $4.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ of dihydropyridine), $6.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), $7.05(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{CH}$ of phenyl ring), $7.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right.$ of coumarin), $7.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$ of phenyl ring), $7.37\left(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{C}_{6}-\right.$ H of coumarin), $7.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ ppm:19.74($\mathrm{C}_{3}-\mathrm{CH} 3$ of phenyl), 19.86($\mathrm{C}_{4}-\mathrm{CH3}$ of phenyl), 21.27, 32.89($\mathrm{C}_{4}-\mathrm{CH}$ of DHP), $52.52\left(\mathrm{OCH}_{3}\right.$ of ester), $52.89\left(\mathrm{OCH}_{3}\right.$ of ester), $59.03,102.44,113.79,117.05(\mathrm{CN}), 117.60,120.10$, $124.81,127.23,130.75,131.16,131.83,133.30,134.18,139.20,140.12,143.90,151.48,152.31$, 158.21, 162.13(CO of coumarin), 162.94(CO of ester), 164.83(CO of ester). Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 67.33; H, 5.04; N, 8.41. Found: C, 67.35; H, 5.06; N, 8.46. GC-MS (m/z): 499 $\left(\mathrm{M}^{+}\right)$.

3.3.6. Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(7-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6f)

The compound 6 f obtained from 7 -methyl-2-oxo-2H-chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), 4-chlorobenzamine (1.0 mmol). White solid; Yield: 78%; mp: 232-234 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3438,3337, 2277, 1748 and $1726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}) δ ppm: $2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{7}-\mathrm{CH}_{3}\right.$ of coumarin), $3.58\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $3.62(\mathrm{~s}, 3 \mathrm{H},-$ OCH_{3} of ester), $4.19\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ of dihydropyridine $), 6.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), 7.35 (d, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}$ of coumarin), 7.47 (dd, $3 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}$ of coumarin), $7.82\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}\right.$ of phenyl ring), $8.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO- d_{6}) δ ppm: 20.83, $45.64\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP), $53.53\left(\mathrm{OCH}_{3}\right.$ of ester), $54.65\left(\mathrm{OCH}_{3}\right.$ of ester), 61.30, 102.30, 105.23, 108.21, 116.87, 118.10 (CN), 118.94, 120.07, 122.19, 125.43, 129.63, 131.37, 134.03, 140.96, 143.27, 147.38, 153.74, 156.34, 159.70, 160.29(CO of coumarin), 163.06(CO of ester), 167.58(CO of ester); Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{6}$: C, 61.73; H, 3.98; N, 8.31. Found: C, 61.75; H, 3.96; N, 8.35. GC-MS (m/z):505 (M^{+}).

3.3.7. Dimethyl-6-amino-5-cyano-4-(6-methoxy-2-oxo-2H-chromen-4-yl)-1-(4-methoxyphenyl)-1,4-dihydropyridine-2,3-dicarboxylate (6 g)

The compound 6 g obtained from 6 -methoxy-2-oxo-2H-chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), 4-methoxybenzenamine (1.0 mmol). Light yellow solid; Yield: 78%; mp: $218-220^{\circ} \mathrm{C}$; IR (KBr): 3401, 3334, 2220, 1745 and $1725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, DMSO- d_{6}) $\delta \mathrm{ppm}: 3.49$ ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$ of ester), $3.59\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), 3.80 (s, $\left.6 \mathrm{H}, \mathrm{C}_{6}-\mathrm{OCH}_{3}\right), 5.03\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$ of dihydropyridine), $5.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), 7.01-7.03(m, 2H, Ar-H), 7.24-7.32(m, 3H, Ar-H), 7.85 (t, 2H Ar-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, DMSO- $\left.d_{6}\right) \delta \mathrm{ppm}: 23.13,35.02\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP), $53.17\left(\mathrm{OCH}_{3}\right.$ of ester), $54.35\left(\mathrm{OCH}_{3}\right.$ of ester), 56.08, 101.11, 113.87, 115.67, 116.46(CN), 119.14, 121.76, 124.43, 128.15, 131.47, 133.27, 135.19, 137.49, $142.49,143.07,151.62,155.17,157.22,158.45,160.37(\mathrm{CO}$ of coumarin), 163.72(CO of ester), 165.49(CO of ester). Anal. Calc. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{8}: \mathrm{C}, 62.67$; H , 4.48; N, 8.12. Found: C, 62.69; H, 4.45; N, 8.16. LC-MS (m/z):517 (M ${ }^{+}$).

3.3.8. Dimethyl-6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(6-methoxy-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6h)

The compound $6 \mathbf{h}$ obtained from 6 -methoxy-2-oxo- 2 H -chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), 3,4-dimethylamine (1.0 mmol). Gray solid; Yield: 84%; mp: 232-234 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3431, 2179, 1748 and $1707 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm}: 2.29\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{3} \& \mathrm{C}_{4}-\mathrm{CH}_{3}\right.$ of phenyl ring), $3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6}-\mathrm{OCH}_{3}\right.$ of coumarin), $3.49(\mathrm{~s}$, $3 \mathrm{H},-\mathrm{OCH}_{3}$ of ester), $3.59\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $4.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ of dihydropyridine), $6.42\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), $7.06(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{CH}$ of phenyl ring), $7.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$ of phenyl ring), $7.15\left(\mathrm{dd}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, \mathrm{C}_{7}-\mathrm{H}\right.$ of coumarin), $7.30(\mathrm{~d}$, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}$ of coumarin), $7.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, DMSO- d_{6}) δ ppm: 19.74($\mathrm{C}_{3}-\mathrm{CH} 3$ of phenyl), 19.86($\mathrm{C}_{4}-\mathrm{CH} 3$ of phenyl), 21.27, 32.89($\mathrm{C}_{4}-$ CH of DHP), $52.52\left(\mathrm{OCH}_{3}\right.$ of ester), $52.89\left(\mathrm{OCH}_{3}\right.$ of ester), $59.03,102.44,113.79,117.05$, $117.60(\mathrm{CN}), 120.10$, 124.81, 127.23, 130.75, 131.16, 131.83, 133.30, 134.18, 139.20, 140.12, 143.90 , 151.48, 152.31, 158.21, 162.13(CO of coumarin), 162.94(CO of ester), 164.83(CO of ester); Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7}$: C, 65.24; H, 4.89; N, 8.15. Found: C, 65.28; H, 4.85; N, 8.19. GC-MS (m/z):515 (${ }^{+}$).

3.3.9. Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(6-methoxy-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6i)

The compound 6i obtained from 6-methoxy-2-oxo-2H-chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), 4-chlorobenzamine (1.0 mmol). Gray solid; Yield: 82%; mp: 230-232 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3414,3334, 2219, 1748 and $1726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO- $\left.d_{6}\right) \delta \mathrm{ppm}: 3.71\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $3.73\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6}{ }^{-}\right.$ OCH_{3} of coumarin), $4.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$ of dihydropyridine), $6.14\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), $7.10(\mathrm{t}, 2 \mathrm{H}, J=8.7$ and $\mathrm{Hz}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=4.2$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm}: 22.19$, $47.06\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP $), 52.37\left(\mathrm{OCH}_{3}\right.$ of ester $), 55.73\left(\mathrm{OCH}_{3}\right.$ of ester $), 60.01,100.30,105.77$, $110.16,117.34,117.90(\mathrm{CN}), 119.46,121.03,123.00,127.88,130.63,132.07,136.47,142.23$, 145.82, $150.18,155.04,157.38,159.64,162.86(\mathrm{CO}$ of coumarin), $165.67(\mathrm{CO}$ of ester), 169.78(CO of ester); Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{7}$: C, 59.83; H, 3.86; N, 8.05. Found: C, 59.86; H, 3.85; N, 8.09. GC-MS (m/z):521 (M^{+}).

3.4. Dimethyl-6-amino-5-cyano-4-(3-oxo-3H-benzo[f]chromen-1-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6j)

The compound $\mathbf{6 j}$ obtained from 3-oxo-3H-benzo[f]chromene-1-carbaldehyde1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), aniline (1.0mmol). Pink solid; Yield: 74\%; mp: 247-249 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3393, 2219, 1732 and $1695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm}: 3.67(\mathrm{~s}$, $3 \mathrm{H},-\mathrm{OCH}_{3}$ of ester), $3.93\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $4.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ of dihydropyridine), $5.18(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), $7.60-6.70(\mathrm{~m}, 5 \mathrm{H}$, of phenyl ring), $7.80(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=8.4$ $\mathrm{Hz}, J=1.2 \mathrm{~Hz}, \mathrm{C}_{6} \& \mathrm{C}_{7}-\mathrm{H}$ of coumarin), $8.11\left(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{C}_{9} \& \mathrm{C}_{10}-\mathrm{H}\right.$ of coumarin), 8.29(d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}$ of coumarin), $8.65\left(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm}: 37.14\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP$), 53.66\left(\mathrm{OCH}_{3}\right.$ of ester), $56.09\left(\mathrm{OCH}_{3}\right.$ of ester $)$, 57.34, 113., $115.33,117.94(\mathrm{CN})$, 120.54, 121.39, 123.77, 124.84, 125.76, 126.29, 126.73, 129.23, 130.62, 131.49, 134.68, 139.67, 141.77, 144.00, 153.16, 155.23, 157.01, 159.42, 160.72 (CO of coumarin), $161.97,162.04(\mathrm{CO}$ of ester), $163.88(\mathrm{CO}$ of ester); Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 68.63; H, 4.17; N, 8.28. Found: C, 68.68; H, 4.15; N, 8.31. GC-MS (m/z):507 $\left(\mathrm{M}^{+}\right)$.

3.4.2. Dimethyl-6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(3-oxo-3H-benzo[f]chromen-1-

yl)-1,4-dihydropyridine-2,3-dicarboxylate (6 k)

The compound $\mathbf{6 k}$ obtained from 3-oxo-3H-benzo[f]chromene-1-carbaldehyde1.0mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), 3,4-dimethylamine (1.0 mmol). Pink solid; Yield: $76 \% ; \mathrm{mp}$: $248-250{ }^{\circ} \mathrm{C}$; IR (KBr): 3426, 3337, 2225, 1746 and $1726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta \mathrm{ppm}: 2.38 \& 2.43$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{C}_{3} \& \mathrm{C}_{4}-\mathrm{CH}_{3}$ of phenyl ring), $3.53\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $3.65(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{OCH}_{3}$ of ester), 4.78(s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $5.19\left(\mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{CH}\right.$ of dihydropyridine), $6.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), $7.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.43(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.64(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-$ H), $7.72(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.04(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ MHz , DMSO- d_{6}) δ ppm: 22.76($\mathrm{C}_{3}-\mathrm{CH} 3$ of phenyl), $23.17\left(\mathrm{C}_{4}-\mathrm{CH} 3\right.$ of phenyl), $36.12\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP), $54.03\left(\mathrm{OCH}_{3}\right.$ of ester), $55.43\left(\mathrm{OCH}_{3}\right.$ of ester), $57.18,100.26,111.45,112.19,114.34$, 117.44(CN), 118.69, 122.31, 123.08, 124.77, 126.25, 129.11, 130.37, 134.18, 137.02, 137.46, $140.76,142.83,152.81,155.27,155.92,157.94,159.42,161.53$ (CO of coumarin), 162.89(CO of ester), $165.75\left(\mathrm{CO}\right.$ of ester). Anal. Calc. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 69.52 ; H, 4.71; N, 7.85. Found: C, 69.58; H, 4.65; N, 7.87. GC-MS (m/z):535 (M ${ }^{+}$).

3.4.3. Dimethyl-6-amino-1-(4-chlorophenyl)-5-cyano-4-(3-oxo-3H-benzo[f]chromen-1-yl)-1,4-dihydropyridine-2,3-dicarboxylate (61)

The compound 61 obtained from 3-oxo-3H-benzo[f]chromene-1-carbaldehyde10.0mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), 4-chloroaniline (1.0 mmol). Pink solid; Yield: 75%; mp: 246-248 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3398, 2198, 1742 and $1724 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta \mathrm{ppm}: 3.59\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $3.91\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $4.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ of dihydropyridine), $5.18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.67\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), $6.63(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}$ of phenyl ring), 6.96 (d, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}$, CH of phenyl ring), $7.53-7.74(\mathrm{~m}, 4 \mathrm{H}$, of coumarin), 8.09 (d, $1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}$ of coumarin), $8.28\left(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}, \mathrm{C}_{9}-\mathrm{H}\right.$ of coumarin) ; ${ }^{13} \mathrm{C}-\mathrm{NMR}(100$ MHz , DMSO- $\left.d_{6}\right) \delta \mathrm{ppm}: 32.93\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP), $54.17\left(\mathrm{OCH}_{3}\right.$ of ester), $54.66\left(\mathrm{OCH}_{3}\right.$ of ester), 56.23, 112.11, 112.87, 113.22, 114.37, 117.29(CN), 118.33, 122.41, 122.89, 123.54, 125.02, $127.45,130.00,131.24,133.49,135.62,139.88,142.17,152.84,154.31,155.03,158.15,159.28$, 161.94(CO of coumarin), 164.68(CO of ester), 165.49(CO of ester). Anal. Calc. for
$\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{6}$: C, 64.27; H, 3.72; N, 7.75. Found: C, 64.30; H, 3.70; N, 7.79. GC-MS $(\mathrm{m} / \mathrm{z}): 541.94\left(\mathrm{M}^{+}\right)$.

3.4.4. Dimethyl-6-amino-5-cyano-4-(2-oxo-2H-benzo[h]chromen-4-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate ($\mathbf{6 m}$)

The compound $\mathbf{6 m}$ obtained from 2 -oxo- 2 H -benzo $[\mathrm{h}]$ chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), aniline (1.0 mmol). Gray solid; Yield: 74%; mp: $247-249{ }^{\circ} \mathrm{C}$; IR (KBr): 3464, 2182, 1751 and $1708 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right) \delta \mathrm{ppm}$: $3.36\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $3.43\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $4.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ of dihydropyridine), 5.30(s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $6.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), 7.49-6.54 (m, 5 H , of phenyl ring), 7.26-7.30 ($\mathrm{m}, 2 \mathrm{H}$, of coumarin), $7.71-7.74$ ($\mathrm{m}, 2 \mathrm{H}$, of coumarin), 7.95 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{C} 9-\mathrm{H}$ of coumarin), $8.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right.$ of coumarin); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta \mathrm{ppm}: 35.14\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP), $52.74,53.15\left(\mathrm{OCH}_{3}\right.$ of ester), $56.54\left(\mathrm{OCH}_{3}\right.$ of ester), $100.39,102.84,113.38,114.63$, 117.45(CN), 120.87, 121.61, 122.34, 122.92, 127.11, 129.28, 130.72, 133.77, 135.22, 138.45, $140.78,141.21,151.09,152.51,154.77,158.45,160.37,162.87$ (CO of coumarin), 163.62(CO of ester), 164.94(CO of ester); Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 68.63; H, 4.17; N, 8.28. Found: C, 68.69; H, 4.15; N, 8.30. GC-MS (m/z):507 (M ${ }^{+}$).

3.4.5. Dimethyl 6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(2-0xo-2H-

 benzo[h]chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6n)The compound $\mathbf{6 n}$ obtained from 2-oxo-2H-benzo[h]chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), 3,4-dimethylamine (1.0 mmol). Gray solid; Yield: 74%; mp: 247-249 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3428, 3338, 2260, 1755 and $1728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , DMSO- d_{6}) δ ppm: $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{3}-\mathrm{CH}_{3}\right.$ of phenyl ring), $2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4}-\mathrm{CH}_{3}\right.$ of phenyl ring), $3.53\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), 3.54(s, $3 \mathrm{H},-\mathrm{OCH}_{3}$ of ester), $5.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ of dihydropyridine), $5.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), $6.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.97(\mathrm{~d}, 1 \mathrm{H}, J=$ $8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.12(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.72-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.96(\mathrm{~d} .1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}$, Ar-H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta \mathrm{ppm}: 19.12\left(\mathrm{C}_{3}-\mathrm{CH} 3\right.$ of phenyl), $19.84\left(\mathrm{C}_{4}-\mathrm{CH} 3\right.$ of phenyl), $35.17\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP), $53.3\left(\mathrm{OCH}_{3}\right.$ of ester), $54.17\left(\mathrm{OCH}_{3}\right.$ of ester), $57.22,100.42$, 111.01, 113.44, 115.00, 117.26(CN), 120.54, 122.67, 123.49, 124.93, 128.11, 128.75, 130.57, $131.84,136.27$, 139.19, 141.97, 144.58, 150.39, 154.69, 156.12, 159.01, 161.21, 161.94(CO of
coumarin), 162.17(CO of ester), 164.94(CO of ester); Anal. Calc. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}: \mathrm{C}, 69.52$; H , 4.71; N, 7.85. Found: C, 69.56; H, 4.67; N, 7.87. GC-MS (m/z):535 (M ${ }^{+}$).

3.4.6. Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(2-oxo-2H-benzo[h]chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (60)

The compound $\mathbf{6 0}$ obtained from 2-oxo- 2 H -benzo $[\mathrm{h}]$ chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), 4-chloroaniline (1.0 mmol). Gray solid; Yield: 75%; mp: 247-249 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3439, 3320, 2232, 1743 and $1722 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta \mathrm{ppm}: 3.37\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $3.45\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of ester), $5.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ of dihydropyridine), $5.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of coumarin), $6.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $7.32(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.48(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.56(\mathrm{~d}$, $3 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) 8.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO- d_{6}) $\delta \mathrm{ppm}: 35.07\left(\mathrm{C}_{4}-\mathrm{CH}\right.$ of DHP), $53.38\left(\mathrm{OCH}_{3}\right.$ of ester), $54.12\left(\mathrm{OCH}_{3}\right.$ of ester), 56.47 , $101.01,111.80,113.25,116.00,116.76(\mathrm{CN}), 119.37,122.16,125.17,125.84,126.46,127.35$, $130.49,133.17,135.27,139.23,141.78,142.48,152.07,155.89,157.45,159.46,160.11$, 161.83(CO of coumarin), 162.54(CO of ester), 164.92(CO of ester); Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{6}$: C, 64.27; H, 3.72; N, 7.75. Found: C, 64.31; H, 3.70; N, 7.76. GC-MS (m/z):541 ($\mathrm{M}+$).

TRUSPEC

Name	Mass	Method	Analysis Date	Carbon \%	Hydrogen \%	Nitrogen \%
6a	0.0404	ASTM	$\begin{aligned} & \hline 27 / 09 \text { / } 2019 \\ & \text { 10:48:53 AM } \end{aligned}$	66.27	4.47	8.91
6b	0.0421	ASTM	$\begin{aligned} & \hline 27 / 09 / 2019 \\ & \text { 11:10:21 AM } \end{aligned}$	67.36	5.02	8.44
6c	0.0342	ASTM	$\begin{aligned} & \hline 27 / 09 / 2019 \\ & \text { 11:20:49 AM } \end{aligned}$	61.78	3.96	8.36
6d	0.0413	ASTM	$\begin{aligned} & \hline 27 / 09 / 2019 \\ & \text { 11:25:55 AM } \end{aligned}$	66.26	4.48	8.96
6e	0.0452	ASTM	$\begin{aligned} & \hline 27 / 09 / 2019 \\ & \text { 12:30:23 PM } \end{aligned}$	67.35	5.06	8.46
6 f	0.0435	ASTM	$\begin{aligned} & \hline 30 / 09 / 2019 \\ & \text { 11:27:39 AM } \end{aligned}$	61.75	3.96	8.35
6g	0.0324	ASTM	$\begin{aligned} & 30 / 09 / 2019 \\ & \text { 11:35:42 AM } \end{aligned}$	62.69	4.45	8.16
6h	0.0391	ASTM	$\begin{aligned} & \hline 30 / 09 / 2019 \\ & 11: 52: 48 \text { AM } \end{aligned}$	65.28	4.85	8.19
6 i	0.0418	ASTM	$\begin{aligned} & 01 \text { / } 10 \text { / } 2019 \\ & \text { 12:06:32 PM } \end{aligned}$	59.86	3.85	8.09
6j	0.0428	ASTM	$\begin{aligned} & \hline 01 \text { / } 10 \text { / } 2019 \\ & \text { 12:17:55 PM } \end{aligned}$	68.68	4.15	8.31
6k	0.0426	ASTM	$\begin{aligned} & \hline 03 / 10 / 2019 \\ & \text { 11:24:48 AM } \end{aligned}$	69.58	4.65	7.87
61	0.0431	ASTM	$\begin{aligned} & \hline 03 / 10 / 2019 \\ & \text { 12:08:35 PM } \end{aligned}$	64.30	3.70	7.79
6m	0.0425	ASTM	$\begin{aligned} & 04 \text { / } 10 \text { / } 2019 \\ & \text { 12:15:54 PM } \end{aligned}$	68.69	4.15	8.30
6n	0.0409	ASTM	$\begin{aligned} & 04 \text { / } 10 \text { / } 2019 \\ & \text { 12:18:41 PM } \end{aligned}$	69.56	4.67	7.87
60	0.0422	ASTM	$\begin{aligned} & 04 / 10 / 2019 \\ & \text { 12:24:47 PM } \end{aligned}$	64.31	3.70	7.76

Page 1 of 1
Figure -S3: CHN Analysis of compounds 6a-60

Spectrum No. 1: IRof compound 6a

Spectrum No. 2: GCMSof compound 6a

Spectrum No. 3: ${ }^{1} \mathrm{H}$-NMRof compound 6a

Spectrum No. 4: $\mathrm{D}_{2} \mathrm{O}$ spectrum exchange of compound 6a in DMSO- d_{6}

Spectrum No. 5: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 6a

Spectrum No. 6: IRof compound 6b

Line\#:1 R.Time:10.5(Scan\#:1260)
MassPeaks:8
RawMode:Single 10.5(1260) BasePeak:44(1999)
BG Mode:None Group 1 - Event 1

Spectrum No. 7: GCMSof compound 6b

Spectrum No. 8: ${ }^{1} \mathrm{H}$-NMR of compound 6b

Spectrum No. 9: ${ }^{13} \mathrm{C}$-NMR of compound 6b
Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(6-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6c)

Spectrum No. 10: IRof compound 6c

Line\#:1 R.Time:0.3(Scan\#:38)
MassPeaks:11
RawMode:Single 0.3(38) BasePeak:83(5098)
BG Mode:None Group 1 - Event 1

Spectrum No. 11: GCMSof compound 6c

Spectrum No. 12: ${ }^{1} \mathrm{H}$-NMR of compound 6c

Dimethyl 6-amino-5-cyano-4-(7-methyl-2-ox0-2H-chromen-4-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6d)

Spectrum No. 13: IRof compound 6d

Spectrum No. 14: GCMSof compound 6d

Spectrum No. 15: ${ }^{1} \mathrm{H}$-NMR of compound 6d

Spectrum No. 16: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 6d
(

Spectrum No. 17: $\mathrm{D}_{2} \mathrm{O}$ exchangeof compound 6d
Dimethyl 6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(7-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6e)

Spectrum No. 18: IRof compound 6e

Spectrum No. 19: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 6e

Spectrum No. 20: ${ }^{13} \mathrm{C}$-NMR of compound 6e

Dimethyl-6-amino-1-(4-chlorophenyl)-5-cyano-4-(7-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6f)

Spectrum No. 21: IRof compound $\mathbf{6 f}$

Spectru
m No. 22: ${ }^{1} \mathrm{H}$-NMRof compound $\mathbf{6 f}$

MASS REPORT

Data File:	5056975.D	Instrume LC-MSD-Trap-XCT
Method:	VYDACPOL.M	Sample Name:C-12

Spectrum No. 23: LCMSof compound 6f

Dimethyl-6-amino-5-cyano-4-(6-methoxy-2-oxo-2H-chromen-4-yl)-1-(4-methoxyphenyl)-1,4-dihydropyridine-2,3-dicarboxylate (6 g)

Spectrum No. 24: IRof compound $\mathbf{6 g}$

Spectrum No. 25: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{6 g}$

MASS REPORT

Data File:	5057254.D	Instrume \quad LC-MSD-Trap-XCT
Method:	VYDACPOL.M	Sample Name:C -15

Spectrum No. 26: LCMSof compound 6g

Dimethyl 6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(6-methoxy-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6h)

Spectrum No. 27: IRof compound 6h

Spectrum No. 28: GCMSof compound 6h

Spectrum No. 29: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{6 h}$

Spectrum No. 30: ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{6 h}$

Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(6-methoxy-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6i)

Spectrum No. 31: IRof compound $\mathbf{6 i}$

Spectrum No. 32: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{6 i}$

MASS REPORT

Data File:	5087192.D	Method:	VYDACPOL.M
Sample Name:	C-56	Instrument:	LC-MSD-Trap-XCT

Spectrum No. 33: LCMSof compound 6i

Dimethyl 6-amino-5-cyano-4-(3-oxo-3H-benzo[f]chromen-1-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6j)

Spectrum No. 34: IRof compound $\mathbf{6 j}$

Spectrum No. 35: GCMSof compound 6j

Spectrum No. 36: ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{6 j}$

Spectrum No. 37: ${ }^{13}$ C-NMRof compound $\mathbf{6 j}$

Dimethyl-6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(3-0xo-3H-benzo[f]chromen-1-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6 k)

Spectrum No. 38: IRof compound $6 \mathbf{k}$

Spectrum No. 39: ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{6 k}$

MASS REPORT

Spectrum No. 40: GCMSof compound 6k

Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(3-oxo-3H-benzo[f]chromen-1-yl)-1,4-dihydropyridine-2,3-dicarboxylate (61)

Spectrum No. 41: IRof compound 61

Spectrum No. 42: GCMSof compound 61

Spectrum No. 43: ${ }^{1} \mathrm{H}$-NMRof compound 61

Spectrum No. 44: ${ }^{13} \mathrm{C}$-NMRof compound 61

Dimethyl 6-amino-5-cyano-4-(2-oxo-2H-benzo[h]chromen-4-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6 m)

Spectrum No. 45: IR of compound $\mathbf{6 m}$

Spectrum No. 46: ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{6 m}$

Spectrum No. 47: ${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{6 m}$

Dimethyl 6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(2-oxo-2H-benzo[h]chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6n)

Spectrum No. 48: IRof compound 6n

Spectrum No. 49: ${ }^{1} \mathrm{H}$-NMR of compound 6 n

MASS REPORT
Sata File:

Spectrum No. 50: LCMSof compound $\mathbf{6 n}$

Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(2-oxo-2H-benzo[h]chromen-4-yl)-
1,4-dihydropyridine-2,3-dicarboxylate (60)

Spectrum No. 51: IRof compound 60

Spectrum No. 52: ${ }^{1} \mathrm{H}$-NMR of compound 60

MASS REPORT

Spectrum No. 53: GCMSof compound 60

Biological protocol

In vitro antimicrobial activity

Minimum Inhibitory Concentration Determination

The MIC values were measured by the broth dilution method. A stock solution $(10.24 \mu \mathrm{~g} / \mathrm{mL})$ of each tested compound in dimethyl sulfoxide (DMSO) were prepared and then diluted with Mueller-Hinton broth to $1024 \mu \mathrm{~g} / \mathrm{mL}$. The strains were grown briefly at $37^{\circ} \mathrm{C}$ in Mueller-Hinton media. After 5 h of bacterial growth, the bacterial culture was diluted to obtain a concentration of $5 \mathrm{X} 10^{5}$ cells $/ \mathrm{mL}$. Then, $150 \mu \mathrm{~L}$ bacterial and fungal suspensions were added to each well of the flat-bottomed 96-well tissue culture plate. Two-fold serial dilutions were carried out from the fist well to the tenth well; the final concentrations of the compounds ranged from $1-512 \mu \mathrm{~g} / \mathrm{mL}$; and excess media $(150 \mu \mathrm{~L})$ were discarded from the last well. The plates were incubated at $37{ }^{\circ} \mathrm{C}$ for 24 h . The MIC of the sample showing no turbidity was recorded as the lowest concentration of compound that inhibited bacterial growth completely. The test organisms are then added to the dilutions of the products, incubated, and scored for growth. Ampicillin, Gentamycin and Amphotericin-B were used as positive controls in the assay.

In vitro anti-inflammatory activity

Anti-inflammatory activity of newly synthesized compounds 6(a-o) was evaluated by protein denaturation method. Diclofenac sodium is a powerful non steroidal anti-inflammatory drug which was used as a standard drug. The reaction mixture consisting of 2 mL of known concentration of compound $\mathbf{6 (a - 0})(100 \mu \mathrm{~g} / \mathrm{mL})$ or standard Diclofenac sodium (100 and 200 $\mu \mathrm{g} / \mathrm{mL}$) and 2.8 mL of phosphate buffered saline (pH 6.4) was mixed with 2 mL of egg albumin (from fresh hen's egg) and incubated at $(27 \pm 1)^{\circ} \mathrm{C}$ for 15 min . Denaturation was induced by keeping the reaction mixture at $70^{\circ} \mathrm{C}$ in a water bath for 10 min . After cooling, the absorbance was measured at 660 nm by using double distilled water as blank. Each experiment was done in triplicate and the average was taken. The percentage inhibition of protein denaturation was calculated by using the following formula.

$$
\% \text { inhibition }=\frac{A t-}{\underline{A}} \underline{A} \underline{c} \underline{c} \times 100
$$

Where, $A_{t}=$ absorbance of test sample; $A_{c}=$ absorbance of control.

Molecular Docking study

Molecular docking was used to clarify the binding mode of the compounds to provide straightforward information for further structural optimization. The crystal structure of the twinned 3.35A structure of S. aureus Gyrase complex with ciprofloxacin and DNA (PDB ID: 2XCT) was extracted from the Brookhaven Protein Database (PDB http://www.rcsb.org/pdb). The proteins were prepared for docking by adding polar hydrogen atom with Gasteiger-Huckel charges and water molecules were removed. The 3D structure of the ligands was generated by the SKETCH module implemented in the SYBYL program (Tripos Inc., St. Louis, USA) and its energy-minimized conformation was obtained with the help of the Tripos force field using Gasteiger-Huckel charges and molecular docking was performed with Surflex-Dock program that is interfaced with Sybyl-X 2.0. and other miscellaneous parameters were assigned with the default values given by the software.

Figure S4. Docked view of all the compounds at the active site of the enzyme (PDB ID: 2XCT)
As depicted in the Figure S5, thecompound 6d showed three bonding interactions at the active site of the enzyme (PDB ID: 2XCT). The carboxylate group of oxygen atom present at the $3^{\text {rd }}$ position of dihydropyridine ring makes one hydrogen bonding interaction with U/SER1084 ($\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{U} / \mathrm{SER} 1084,1.91 \AA$) amino acid residue. Coumarin ring oxygen atom raises one hydrogen bonding interaction with U/DA7 ($\mathrm{O} \cdots \mathrm{H}-\mathrm{U} / \mathrm{DA} 7,2.11 \AA$) amino acid residue. Whereas, another hydrogen bonding interaction raised from the hydrogen atom of
amino group present on the $6^{\text {th }}$ position of dihydropyridine ring with nitrogen of X/DC13 $(\mathrm{NH} \cdots \mathrm{N}-\mathrm{X} / \mathrm{DC} 13,2.88 \AA$) amino acid residue.

Figure S5. Docked view of compound 6d at the active site of the enzyme (PDB ID: 2XCT)

Figure S6. Docked view of all the compounds at the active site of the enzyme PDB ID: 4PH9
From Figure S7(A-C) we noticed that three hydrogen bonding interactions compound $\mathbf{6 e}$ with at the active site of the enzyme (PDB ID: 4PH9). The $3^{\text {rd }}$ position oxygen atom of carboxylate group of dihydropyridine ring makes a hydrogen bonding interaction with hydrogen
of ARG121 (C-O---H-AR121, $2.63 \AA$). Similarly, oxygen atom of carboxylate group present at the $2^{\text {nd }}$ position of dihydropyridine ring makes a hydrogen bonding interaction with hydrogen of SER354 (C=O----H-SER354, 2.61 Å) amino acid and remaining one hydrogen bonding interaction raised from the nitrogen atom of cyano group present on the $5^{\text {th }}$ position of dihydropyridine ring with oxygen of SER531 (CN----H-SER531, 2.73 \AA) amino acid residue.

Figure S7. Docked view of compound 6e at the active site of the enzyme PDB: 4PH9

Table S1.Surflex Docking score ($\mathrm{kcal} / \mathrm{mol}$) of the coumarin derivatives

Compounds	$\begin{gathered} \mathrm{C} \\ \text { Score }^{\mathrm{a}} \end{gathered}$	$\begin{aligned} & \hline \text { Crash } \\ & \text { Score }^{\text {b }} \end{aligned}$	Polar Score ${ }^{\text {c }}$	D Score ${ }^{\text {d }}$	$\begin{gathered} \hline \text { PMF } \\ \text { Score }^{\mathbf{e}} \end{gathered}$	G Score ${ }^{\text {f }}$	Chem Score ${ }^{\mathrm{g}}$
6 a	8.31	-4.20	3.34	-165.868	-158.030	-270.196	-24.632
6 b	4.81	-6.13	2.42	-124.200	-85.819	-279.366	-16.769
6 c	7.25	-4.40	3.57	-173.634	-176.010	-335.546	-25.217
6d	8.75	-3.62	3.73	-166.662	-168.050	-331.586	-26.724
6 e	4.93	-8.05	3.14	-188.133	-160.957	-346.224	-35.964
6 f	8.56	-4.12	3.59	-172.527	-163.355	-347.889	-27.511
6 g	4.82	-6.64	5.44	-141.575	-135.090	-175.568	-35.160
6 h	7.60	-5.29	3.48	-197.618	-196.541	-310.450	-27.625
6 i	5.84	-5.91	3.66	-198.023	-187.498	-313.446	-28.512
6 j	7.30	-4.83	2.28	-199.093	-172.946	-307.852	-24.117
6 k	6.11	-5.09	0.72	-212.041	-165.519	-383.404	-22.908
61	5.34	-8.28	3.18	-214.539	-169.672	-350.267	-32.677
6 m	5.59	-6.36	5.00	-169.452	-154.595	-285.944	-25.352
6 n	5.06	-6.19	4.69	-166.515	-146.057	-278.263	-23.561
60	7.12	-3.48	0.02	-190.946	-105.612	-328.526	-18.046
Ciprofloxacin	10.32	-1.82	5.96	-105.008	-99.252	-199.166	-25.901

${ }^{\text {a }}$ C Score (Consensus Score) integrates a number of popular scoring functions for ranking the affinity of ligands bound to the active site of a receptor and reports the output of total score.
${ }^{\mathrm{b}}$ Crash-score revealing the inappropriate penetration into the binding site. Crash scores close to 0 are favorable. Negative numbers indicate penetration.
${ }^{c}$ Polar indicating the contribution of the polar interactions to the total score. The polar score may be useful for excluding docking results that make no hydrogen bonds.
${ }^{\mathrm{d}}$ D-score for charge and van der Waals interactions between the protein and the ligand.
${ }^{\mathrm{e}}$ PMF-score indicating the Helmholtz free energies of interactions for protein-ligand atom pairs (Potential of Mean Force, PMF).
${ }^{\mathrm{f}}$ G-score showing hydrogen bonding, complex (ligand-protein), and internal (ligand-ligand) energies.
${ }^{\mathrm{g}}$ Chem-score points for H -bonding, lipophilic contact, and rotational entropy, along with an intercept term.

Table S2. Surflex Docking score ($\mathrm{kcal} / \mathrm{mol}$) of the derivatives

Compounds	$\underset{\text { Score }}{\text { C }}$	Crash Score ${ }^{\text {b }}$	Polar Score ${ }^{\text {c }}$	D Score ${ }^{\text {d }}$	PMF Score ${ }^{\text {e }}$	G Score ${ }^{\text {f }}$	Chem Score ${ }^{\text {g }}$
Ibuprofen	10.80	-0.73	4.42	-120.694	-30.190	-233.808	-34.764
6a	8.60	-21.18	0.01	-223.576	-87.876	-387.312	-46.830
6 b	7.56	-33.21	0.91	-265.444	-11.734	-462.850	-52.426
6c	8.12	-26.79	0.01	-240.979	-88.320	-404.211	-50.108
6d	9.01	-18.35	1.46	-219.762	-57.502	-349.507	-47.656
6 e	9.02	-19.06	0.02	-237.647	-21.375	-432.821	-45.403
6 f	8.80	-21.76	0.87	-245.654	-71.905	-409.981	-52.967
6 g	6.98	-36.38	1.06	-251.753	10.780	-402.935	-44.211
6 h	8.02	-28.15	0.03	-252.555	-57.106	-449.275	-53.388
6 i	8.52	-25.45	1.12	-241.264	-87.191	-403.294	-49.873
6 j	6.54	-58.28	0.54	-246.834	64.110	-357.959	-55.631
6k	7.12	-35.00	0.24	-252.075	-51.147	-444.399	-58.909
61	6.82	-44.78	0.02	-255.006	-6.749	-350.270	-55.667
6 m	9.01	-19.14	0.00	-238.648	-114.499	-437.796	-52.914
6 n	6.90	-43.81	0.00	-261.734	-78.808	-433.449	-59.705
60	7.24	-30.18	0.01	-257.653	-34.100	-415.336	-52.087

${ }^{\text {a }} \mathrm{C}$ Score (Consensus Score) integrates a number of popular scoring functions for ranking the affinity of ligands bound to the active site of a receptor and reports the output of total score.
${ }^{\mathrm{b}}$ Crash-score revealing the inappropriate penetration into the binding site. Crash scores close to 0 are favorable. Negative numbers indicate penetration.
${ }^{c}$ Polar indicating the contribution of the polar interactions to the total score. The polar score may be useful for excluding docking results that make no hydrogen bonds.
${ }^{\mathrm{d}}$ D-score for charge and van der Waals interactions between the protein and the ligand.
${ }^{\mathrm{e}}$ PMF-score indicating the Helmholtz free energies of interactions for protein-ligand atom pairs (Potential of Mean Force, PMF).
${ }^{\mathrm{f}}$ G-score showing hydrogen bonding, complex (ligand-protein), and internal (ligand-ligand) energies.
${ }^{\mathrm{g}}$ Chem-score points for H-bonding, lipophilic contact, and rotational entropy, along with an intercept term.

