Supplementary Information

Synthesis, *in vitro* biological evaluation and molecular docking study of coumarin-1,4-dihydropyridine derivatives as potent anti-inflammatory agents

Jyoti M Madar^a, Lokesh A Shastri^{*a}, Samundeeswari L Shastri^a, Megharaja Holiyachi^a, Nirmala S Naik^a, Parashuram Gudimani^a, Varsha Pawar^a, Arun K Shettar^b, Shrinivas D Joshi^c & Vinay A Sungar^d

^a Department of Chemistry, Karnatak University, Dharwad 580 003, India

^b PG Department of Studies and Research in Biotechnology and Bioinformatics Akkamahadevi Women's University Vijayapure 586 108, India

^c Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T.'s College of Pharmacy, Sangolli Rayanna Nagar, Dharwad 580 002, India

^d Department of Chemistry, G.S.S. College, Belagavi 590 006, India E-mail: drlashastri@kud.ac.in

Received 26 May 2020; accepted (revised) 27 October 2021

Chemical shift in δ ppm **Structural information**

Figure S1. Assignment of chemical shift and coupling constant of compound 6a

Chemical shift in δ ppm **Structural information** 21.55 : C₆-CH₃ of coumarin

52.71 : OCH₃ of ester 53.14 : OCH₃ of ester : C₄-CH of DHP

117.47 : CN

33.73

161.10 : CO of coumarin

163.13 : CO of ester

164.90 : CO of ester

Figure S2. Assignment of ¹³C-NMR chemical shift of compound 6a

3.3. **Data**

3.3.1. Dimethy 6-amino-5-cyano-4-(6-methyl-2-oxo-2H-chromen-4-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6a)

The compound **6a** obtained from 6-methyl-2-oxo-2H-chromene-4-carbaldehyde (1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), aniline (1.0mmol). Yellow solid; Yield: 85%; mp: 268-270 °C; IR (KBr): 3423, 2180, 1753 and 1712 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 2.41(s, 3H, C₆-CH₃ of coumarin), 3.35(s, 3H, -OCH₃ of ester), 3.45(s, 3H, -OCH₃ of ester), 5.12(s, 1H, CH of dihydropyridine), 5.84(s, 2H, NH₂), 6.18(s, 1H, C₃-H of coumarin), 7.26(dd, 1H, *J*=9.2 Hz, *J*=2 Hz, C₇-H of coumarin), 7.25-7.27 (m, 3H, CH of phenyl ring), 7.49(s, 1H, C₅-H of coumarin), 7.49-7.50(m, 2H, CH of phenyl ring), 8.02 (d, 1H, *J*=8.4 Hz, C₈-H of coumarin); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 21.55 (C₆-CH₃), 33.73 (C₄-CH of DHP), 52.75 (OCH₃ of ester), 53.14 (OCH₃ of ester), 57.46, 102.71, 111.80, 114.62, 115.65, 117.47 (CN), 120.88, 125.66, 126.05, 130.33, 130.75, 135.04, 135.49, 144.02, 144.17, 152.54, 154.24, 159.11, 159.49, 161.10 (CO of coumarin), 163.13 (CO of ester), 164.90 (CO of ester); GC-MS (*m*/*z*): 471 (M⁺).

3.3.2. Dimethyl 6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(6-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6b)

The compound **6b** obtained from 6-methyl-2-oxo-2H-chromene-4-carbaldehyde (1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), 3,4-dimethylamine (1.0mmol). Gray solid; Yield: 87%; mp: 268-270 °C; IR (KBr): 3413, 2185, 1750 and 1711 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 2.28 (s, 6H, C₃& C₄-CH₃ of phenyl ring), 2.45 (s, 3H, C₆-CH₃ of coumarin), 3.47(s, 3H, -OCH₃ of ester), 3.55(s, 3H, -OCH₃ of ester), 4.24(s, 2H, NH₂), 5.12(s, 1H, CH of dihydropyridine), 6.36(s, 1H, C₃-H of coumarin), 7.04(dd, 1H, *J*=8 Hz, *J*=2 Hz, C₇-H of coumarin), 7.07(s, 1H, C₅-H of coumarin), 7.19(m, 3H, CH of phenyl ring), 7.91(d, 1H, *J*=8 Hz, C₈-H of coumarin); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 19.74(C₃- CH₃ of phenyl), 19.86 ((C₄- CH₃ of phenyl)), 21.73(C₆-CH₃), 32.87(C₄-CH of DHP), 52.50(OCH₃ of ester), 52.88(OCH₃ of ester), 59.15, 99.99, 102.43, 112.81, 115.52, 117.55(CN), 120.13, 124.50, 125.77, 127.45, 130.74, 131.15, 140.12, 143.66, 143.88, 151.36, 153.11, 154.28, 158.61, 162.25(CO of coumarin), 162.94(CO of ester), 164.83(CO of ester); Anal. Calc. for C₂₈H₂₅N₃O₆: C, 67.33; H, 5.04; N, 8.41. Found: C, 67.36; H, 5.02; N, 8.44. GC-MS (*m*/*z*): 499 (M⁺).

3.3.3. Dimethyl-6-amino-1-(4-chlorophenyl)-5-cyano-4-(6-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6c)

The compound **6c** obtained from 6-methyl-2-oxo-2H-chromene-4-carbaldehyde (1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), 4-chlorobenzenamine (1.0mmol). Gray solid; Yield: 83%; mp: 252-254 °C; IR (KBr): 3346, 2185, 1750 and 1700 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 2.42 (s, 3H, C₆-CH₃ of coumarin), 3.43(s, 3H, -OCH₃ of ester), 3.62(s, 3H, -OCH₃ of ester), 4.21(s, 2H, NH₂), 5.21(s, 1H, CH of dihydropyridine), 6.23(s, 1H, C₃-H of coumarin), 7.15(dd, 1H, *J*=8 Hz, *J*=2 Hz, C₇-H of coumarin), 7.22(d, 1H, *J*=7.2 Hz, C₅-H of coumarin), 7.27(d, 4H, *J*=8 Hz, CH of phenyl ring), 7.87(d, 1H, *J*=8 Hz, C₈-H of coumarin); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 22.54(C₆-CH₃), 33.27(C₄-CH of DHP), 51.91(OCH₃ of ester), 52.31(OCH₃ of ester), 58.25, 100.19, 105.23, 115.57, 117.02, 117.85(CN), 119.34, 123.21, 125.37, 130.64, 132.27, 139.45, 141.27, 144.67, 151.36, 155.04, 157.11, 161.24(CO of coumarin), 163.17(CO of ester), 165.23(CO of ester); Anal. Calc. for C₂₆H₂₀ClN₃O₆: C, 61.73; H, 3.98; N, 8.31. Found: C, 61.78; H, 3.96; N, 8.36. GC-MS (*m*/*z*): 505 (M⁺).

3.3.4. Dimethyl 6-amino-5-cyano-4-(7-methyl-2-oxo-2H-chromen-4-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6d)

The compound **6d** obtained from 7-methyl-2-oxo-2H-chromene-4-carbaldehyde (1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), aniline (1.0mmol). Cream solid; Yield: 86%; mp: 238-232 °C; IR (KBr): 3432, 2178, 1749 and 1710 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 2.35 (s, 3H, C₇-CH₃ of coumarin), 3.42(s, 3H, -OCH₃ of ester), 3.48(s, 3H, -OCH₃ of ester), 5.18(s, 1H, CH of dihydropyridine), 5.64(s, 2H, NH₂), 6.24(s, 1H, C₃-H of coumarin), 7.21(dd, 1H, *J*=8 Hz, *J*=2 Hz, C₆-H of coumarin), 7.23-7.29(m, 3H, CH of phenyl ring), 7.51(s, 1H, C₈-H of coumarin), 7.52-7.55(m, 2H, CH of phenyl ring), 7.89(d, 1H, *J*=8.4 Hz, C₅-H of coumarin); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 23.13(C₇-CH₃), 35.02(C₄-CH of DHP), 53.17(OCH₃ of ester), 54.35(OCH₃ of ester), 56.08, 101.11, 113.20, 113.87, 115.67, 116.46(CN), 119.14, 121.76, 128.15, 131.47, 133.27, 135.19, 137.49, 142.49, 143.07, 151.62, 155.17, 157.22, 158.45, 162.87(CO of coumarin), 163.72(CO of ester), 165.49(CO of ester); Anal. Calc. for C₂₆H₂₁N₃O₆: C, 66.24; H, 4.49; N, 8.91. Found: C, 66.26; H, 4.48; N, 8.94. GC-MS (*m*/*z*):471 (M⁺).

3.3.5. Dimethyl 6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(7-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6e)

The compound **6e** obtained from 7-methyl-2-oxo-2H-chromene-4-carbaldehyde (1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), 3,4-dimethylamine (1.0mmol). Gray solid; Yield: 89%; mp: 222-224 °C; IR (KBr): 3432, 2175, 1754 and 1718 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 2.28 (s, 6H, C₃& C₄-CH₃ of phenyl ring), 2.45(s, 3H, C₇-CH₃ of coumarin), 3.48(s, 3H, -OCH₃ of ester), 3.57(s, 3H, -OCH₃ of ester), 4.25(s, 2H, NH₂), 5.12(s, 1H, CH of dihydropyridine), 6.40(s, 1H, C₃-H of coumarin), 7.05(d, 2H, *J*=8.4 Hz, CH of phenyl ring), 7.22(d, 1H, *J*=8 Hz, C₅-H of coumarin), 7.26(s, 1H, CH of phenyl ring), 7.37(d, 1H, *J*=8 Hz, C₆-H of coumarin), 7.82 (s, 1H, C₈-H of coumarin); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm:19.74(C₃- CH₃ of phenyl), 19.86(C₄- CH₃ of phenyl), 21.27, 32.89(C₄-CH of DHP), 52.52(OCH₃ of ester), 52.89(OCH₃ of ester), 59.03, 102.44, 113.79, 117.05(CN), 117.60, 120.10, 124.81, 127.23, 130.75, 131.16, 131.83, 133.30, 134.18, 139.20, 140.12, 143.90, 151.48, 152.31, 158.21, 162.13(CO of coumarin), 162.94(CO of ester), 164.83(CO of ester). Anal. Calc. for C₂₈H₂₅N₃O₆: C, 67.33; H, 5.04; N, 8.41. Found: C, 67.35; H, 5.06; N, 8.46. GC-MS (*m*/*z*): 499 (M⁺).

3.3.6. Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(7-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6f)

The compound **6f** obtained from 7-methyl-2-oxo-2H-chromene-4-carbaldehyde (1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), 4-chlorobenzamine (1.0mmol). White solid; Yield: 78%; mp: 232-234 °C; IR (KBr): 3438,3337, 2277, 1748 and 1726 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 2.53 (s, 3H, C₇-CH₃ of coumarin), 3.58(s, 3H, -OCH₃ of ester), 3.62(s, 3H, -OCH₃ of ester), 4.19(s, 2H, NH₂), 5.60(s,1H, CH of dihydropyridine), 6.26(s, 1H, C₃-H of coumarin), 7.35(d, 2H, *J*=7.8 Hz, C₆-H of coumarin), 7.47(dd, 3H, *J*=8.4 Hz, C₅-H of coumarin), 7.82(d, 4H, *J*=8 Hz, CH of phenyl ring), 8.23(s, 1H, C₈-H of coumarin); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 20.83, 45.64(C₄-CH of DHP), 53.53(OCH₃ of ester), 54.65(OCH₃ of ester), 61.30, 102.30, 105.23, 108.21, 116.87, 118.10 (CN), 118.94, 120.07, 122.19, 125.43, 129.63, 131.37, 134.03, 140.96, 143.27, 147.38, 153.74, 156.34, 159.70, 160.29(CO of coumarin), 163.06(CO of ester), 167.58(CO of ester); Anal. Calc. for C₂₆H₂₀ClN₃O₆: C, 61.73; H, 3.98; N, 8.31. Found: C, 61.75; H, 3.96; N, 8.35. GC-MS (*m*/*z*):505 (M⁺).

3.3.7. Dimethyl-6-amino-5-cyano-4-(6-methoxy-2-oxo-2H-chromen-4-yl)-1-(4-methoxyphenyl)-1,4-dihydropyridine-2,3-dicarboxylate (6g)

The compound **6g** obtained from 6-methoxy-2-oxo-2H-chromene-4-carbaldehyde (1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), 4-methoxybenzenamine (1.0mmol). Light yellow solid; Yield: 78%; mp: 218-220 °C; IR (KBr): 3401, 3334, 2220, 1745 and 1725 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 3.49 (s, 3H, -OCH₃ of ester), 3.59 (s, 3H, -OCH₃ of ester), 3.80 (s, 6H, C₆-OCH₃), 5.03 (s, 1H, CH of dihydropyridine), 5.76(s, 2H, NH₂), 6.23(s, 1H, C₃-H of coumarin), 7.01-7.03(m, 2H, Ar-H), 7.24-7.32(m, 3H, Ar-H), 7.85 (t, 2H Ar-H). ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 23.13, 35.02(C₄-CH of DHP), 53.17(OCH₃ of ester), 54.35(OCH₃ of ester), 56.08, 101.11, 113.87, 115.67, 116.46(CN), 119.14, 121.76, 124.43, 128.15, 131.47, 133.27, 135.19, 137.49, 142.49, 143.07, 151.62, 155.17, 157.22, 158.45, 160.37(CO of coumarin), 163.72(CO of ester), 165.49(CO of ester). Anal. Calc. for C₂₇H₂₃N₃O₈: C, 62.67; H, 4.48; N, 8.12. Found: C, 62.69; H, 4.45; N, 8.16. LC-MS (*m*/*z*):517 (M⁺).

3.3.8. Dimethyl-6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(6-methoxy-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6h)

The compound **6h** obtained from 6-methoxy-2-oxo-2H-chromene-4-carbaldehyde (1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), 3,4-dimethylamine (1.0mmol). Gray solid; Yield: 84%; mp: 232-234 °C; IR (KBr): 3431, 2179, 1748 and 1707 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 2.29(s, 6H, C₃& C₄-CH₃ of phenyl ring), 3.94(s, 3H, C₆-OCH₃ of coumarin), 3.49(s, 3H, -OCH₃ of ester), 3.59(s, 3H, -OCH₃ of ester), 4.26(s, 2H, NH₂), 5.08(s, 1H, CH of dihydropyridine), 6.42 (s, 1H, C₃-H of coumarin), 7.06(d, 2H, *J*=8 Hz, CH of phenyl ring), 7.21(s, 1H, CH of phenyl ring), 7.15(dd, 1H, *J*=8.8 Hz, *J*=2.8 Hz, C₇-H of coumarin), 7.30(d, 1H, *J*=8.8 Hz, C₈-H of coumarin), 7.47(d, 1H, *J*=2.8 Hz, C₅-H of coumarin); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 19.74(C₃- CH3 of phenyl), 19.86(C₄- CH3 of phenyl), 21.27, 32.89(C₄- CH of DHP), 52.52(OCH₃ of ester), 52.89(OCH₃ of ester), 59.03, 102.44, 113.79, 117.05, 117.60(CN), 120.10, 124.81, 127.23, 130.75, 131.16, 131.83, 133.30, 134.18, 139.20, 140.12, 143.90, 151.48, 152.31, 158.21, 162.13(CO of coumarin), 162.94(CO of ester), 164.83(CO of ester); Anal. Calc. for C₂₈H₂₅N₃O₇: C, 65.24; H, 4.89; N, 8.15. Found: C, 65.28; H, 4.85; N, 8.19. GC-MS (*m*/*z*):515 (M⁺).

3.3.9. Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(6-methoxy-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6i)

The compound **6i** obtained from 6-methoxy-2-oxo-2H-chromene-4-carbaldehyde (1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), 4-chlorobenzamine (1.0mmol). Gray solid; Yield: 82%; mp: 230-232 °C; IR (KBr): 3414,3334, 2219, 1748 and 1726 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 3.71(s, 3H, -OCH₃ of ester), 3.73(s, 3H, -OCH₃ of ester), 3.88(s, 3H, C₆-OCH₃ of coumarin), 4.27(s, 2H, NH₂), 5.21(s, 1H, CH of dihydropyridine), 6.14(s, 1H, C₃-H of coumarin), 7.10(t, 2H, *J*=8.7 and Hz, *J*= 8.5 Hz, Ar-H), 7.19(m, 3H,Ar-H), 7.29(d, 2H, *J*=4.2 Hz, Ar-H), 7.80(d, 1H, J= 8.6Hz, Ar-H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 22.19, 47.06(C₄-CH of DHP), 52.37(OCH₃ of ester), 55.73(OCH₃ of ester), 60.01,100.30, 105.77, 110.16, 117.34, 117.90(CN), 119.46, 121.03, 123.00, 127.88, 130.63, 132.07, 136.47, 142.23, 145.82, 150.18, 155.04, 157.38, 159.64, 162.86(CO of coumarin), 165.67(CO of ester), 169.78(CO of ester); Anal. Calc. for C₂₆H₂₀ClN₃O₇: C, 59.83; H, 3.86; N, 8.05. Found: C, 59.86; H, 3.85; N, 8.09. GC-MS (*m*/*z*):521 (M⁺).

3.4. Dimethyl-6-amino-5-cyano-4-(3-oxo-3H-benzo[f]chromen-1-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6j)

The compound **6j** obtained from 3-oxo-3H-benzo[f]chromene-1-carbaldehyde1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), aniline (1.0mmol). Pink solid; Yield: 74%; mp: 247-249 °C; IR (KBr): 3393, 2219, 1732 and 1695 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 3.67(s, 3H, -OCH₃ of ester), 3.93(s, 3H, -OCH₃ of ester), 4.32(s, 1H, CH of dihydropyridine), 5.18(s, 2H, NH₂), 6.00(s, 1H, C₃-H of coumarin), 7.60-6.70(m, 5H, of phenyl ring), 7.80(dd, 2H, *J*=8.4 Hz, *J*=1.2 Hz, C₆ & C₇-H of coumarin), 8.11(d, 2H, *J*=7.2 Hz, C₉& C₁₀-H of coumarin), 8.29(d, 1H, *J*=8.8Hz, C₅-H of coumarin), 8.65(d, 1H, *J*=8.4 Hz, C₈-H of coumarin); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 37.14(C₄-CH of DHP), 53.66(OCH₃ of ester), 56.09(OCH₃ of ester), 57.34, 113., 115.33, 117.94(CN), 120.54, 121.39, 123.77, 124.84, 125.76, 126.29, 126.73, 129.23, 130.62, 131.49, 134.68, 139.67, 141.77, 144.00, 153.16, 155.23, 157.01, 159.42, 160.72(CO of coumarin), 161.97, 162.04(CO of ester), 163.88(CO of ester); Anal. Calc. for C₂₉H₂₁N₃O₆: C, 68.63; H, 4.17; N, 8.28. Found: C, 68.68; H, 4.15; N, 8.31. GC-MS (*m*/*z*):507 (M⁺).

3.4.2. Dimethyl-6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(3-oxo-3H-benzo[f]chromen-1-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6k)

The compound **6k** obtained from 3-oxo-3H-benzo[f]chromene-1-carbaldehyde1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), 3,4-dimethylamine (1.0mmol). Pink solid; Yield: 76%; mp: 248-250 °C; IR (KBr): 3426, 3337, 2225, 1746 and 1726 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 2.38 & 2.43 (s, 6H, C₃& C₄-CH₃ of phenyl ring), 3.53(s, 3H, -OCH₃ of ester), 3.65(s, 3H, -OCH₃ of ester), 4.78(s, 2H, NH₂), 5.19(s,1H, 1H, CH of dihydropyridine), 6.21(s, 1H, C₃-H of coumarin), 7.31(d, 1H, Ar-H , *J*=8.0 Hz), 7.43(t, 2H, Ar-H), 7.67(m, 4H, Ar-H), 7.64(t, 1H,Ar-H), 7.72(d, 2H, *J*=6.4 Hz, Ar-H), 7.91(s, 1H, Ar-H), 8.04(d, 1H, *J*=4 Hz, Ar-H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 22.76(C₃- CH₃ of phenyl), 23.17(C₄- CH₃ of phenyl), 36.12(C₄-CH of DHP), 54.03(OCH₃ of ester), 55.43(OCH₃ of ester), 57.18, 100.26, 111.45, 112.19, 114.34, 117.44(CN), 118.69, 122.31, 123.08, 124.77, 126.25, 129.11, 130.37, 134.18, 137.02, 137.46, 140.76, 142.83, 152.81, 155.27, 155.92, 157.94, 159.42, 161.53(CO of coumarin), 162.89(CO of ester), 165.75(CO of ester). Anal. Calc. for C₃₁H₂₅N₃O₆: C, 69.52; H, 4.71; N, 7.85. Found: C, 69.58; H, 4.65; N, 7.87. GC-MS (*m*/*z*):535 (M⁺).

3.4.3. Dimethyl-6-amino-1-(4-chlorophenyl)-5-cyano-4-(3-oxo-3H-benzo[f]chromen-1-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6l)

The compound **61** obtained from 3-oxo-3H-benzo[f]chromene-1-carbaldehyde10.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), 4-chloroaniline (1.0mmol). Pink solid; Yield: 75%; mp: 246-248 °C; IR (KBr): 3398, 2198, 1742 and 1724 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 3.59(s, 3H, -OCH₃ of ester), 3.91(s, 3H, -OCH₃ of ester), 4.23(s, 1H, CH of dihydropyridine), 5.18(s, 2H, NH₂), 5.67(s, 1H, C₃-H of coumarin), 6.63 (d, 2H, *J*=7.2 Hz, CH of phenyl ring), 6.96 (d, 2H, *J*=7.2 Hz, CH of phenyl ring), 7.53-7.74(m, 4H, of coumarin), 8.09 (d, 1H, *J*=8.4 Hz, C₅-H of coumarin), 8.28(d, 1H, *J*=9.2 Hz, C₉-H of coumarin); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 32.93(C₄-CH of DHP), 54.17(OCH₃ of ester), 54.66(OCH₃ of ester), 56.23, 112.11, 112.87, 113.22, 114.37, 117.29(CN), 118.33, 122.41, 122.89, 123.54, 125.02, 127.45, 130.00, 131.24, 133.49, 135.62, 139.88, 142.17, 152.84, 154.31, 155.03, 158.15, 159.28, 161.94(CO of coumarin), 164.68(CO of ester), 165.49(CO of ester). Anal. Calc. for

 $C_{29}H_{20}CIN_3O_6$: C, 64.27; H, 3.72; N, 7.75. Found: C, 64.30; H, 3.70; N, 7.79. GC-MS (m/z):541.94 (M^+) .

3.4.4. Dimethyl-6-amino-5-cyano-4-(2-oxo-2H-benzo[h]chromen-4-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6m)

The compound **6m** obtained from 2-oxo-2H-benzo[h]chromene-4-carbaldehyde (1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), aniline (1.0mmol). Gray solid; Yield: 74%; mp: 247-249 °C; IR (KBr): 3464, 2182, 1751 and 1708 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 3.36(s, 3H, -OCH₃ of ester), 3.43(s, 3H, -OCH₃ of ester), 4.31(s, 1H, CH of dihydropyridine), 5.30(s, 2H, NH₂), 6.35(s, 1H, C₃-H of coumarin), 7.49-6.54 (m, 5H, of phenyl ring), 7.26-7.30 (m, 2H, of coumarin), 7.71-7.74 (m, 2H, of coumarin), 7.95(d, 1H, *J*=8.8 Hz, C₉-H of coumarin), 8.65 (d, 1H, *J*=9.2 Hz, C₅-H of coumarin); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 35.14(C₄-CH of DHP), 52.74, 53.15(OCH₃ of ester), 56.54(OCH₃ of ester), 100.39, 102.84, 113.38, 114.63, 117.45(CN), 120.87, 121.61, 122.34, 122.92, 127.11, 129.28, 130.72, 133.77, 135.22, 138.45, 140.78, 141.21, 151.09, 152.51, 154.77, 158.45, 160.37, 162.87(CO of coumarin), 163.62(CO of ester), 164.94(CO of ester); Anal. Calc. for C₂₉H₂₁N₃O₆: C, 68.63; H, 4.17; N, 8.28. Found: C, 68.69; H, 4.15; N, 8.30. GC-MS (*m*/*z*):507 (M⁺).

3.4.5. Dimethyl 6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(2-oxo-2H-benzo[h]chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6n)

The compound **6n** obtained from 2-oxo-2H-benzo[h]chromene-4-carbaldehyde (1.0mmol), DMAD (1.0mmol), malononitrile (1.0mmol), 3,4-dimethylamine (1.0mmol). Gray solid; Yield: 74%; mp: 247-249 °C; IR (KBr): 3428, 3338, 2260, 1755 and 1728 cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) δ ppm: 2.38(s, 3H, C₃-CH₃ of phenyl ring), 2.49(s, 3H, C₄-CH₃ of phenyl ring), 3.53(s, 3H, -OCH₃ of ester), 3.54(s, 3H, -OCH₃ of ester), 5.28(s, 1H, CH of dihydropyridine), 5.49 (s, 2H, NH₂), 6.36(s, 1H, C₃-H of coumarin), 6.65(d, 1H, *J*=8Hz,Ar-H), 6.97(d, 1H, *J* = 8Hz, Ar-H), 7.12(t, 2H, Ar-H), 7.72-7.30(m, 3H, Ar-H), 7.38(s, 1H,Ar-H), 7.96(d. 1H, *J*=8 Hz, Ar-H); ¹³C-NMR (100 MHz, DMSO-*d*₆) δ ppm: 19.12(C₃- CH₃ of phenyl), 19.84(C₄- CH₃ of phenyl), 35.17(C₄-CH of DHP), 53.3(OCH₃ of ester), 54.17(OCH₃ of ester), 57.22, 100.42, 111.01, 113.44, 115.00, 117.26(CN), 120.54, 122.67, 123.49, 124.93, 128.11, 128.75, 130.57, 131.84, 136.27, 139.19, 141.97, 144.58, 150.39, 154.69, 156.12, 159.01, 161.21, 161.94(CO of

coumarin), 162.17(CO of ester), 164.94(CO of ester); Anal. Calc. for $C_{31}H_{25}N_3O_6$: C, 69.52; H, 4.71; N, 7.85. Found: C, 69.56; H, 4.67; N, 7.87. GC-MS (m/z):535 (M^+) .

3.4.6. Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(2-oxo-2H-benzo[h]chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (60)

The compound **60** obtained from 2-oxo-2H-benzo[h]chromene-4-carbaldehyde (1.0 mmol), DMAD (1.0 mmol), malononitrile (1.0 mmol), 4-chloroaniline (1.0 mmol). Gray solid; Yield: 75%; mp: 247-249 °C; IR (KBr): 3439, 3320, 2232, 1743 and 1722cm⁻¹; ¹H-NMR (400 MHz, DMSO- d_6) δ ppm: 3.37(s, 3H, -OCH₃ of ester), 3.45(s, 3H, -OCH₃ of ester), 5.18(s, 1H, CH of dihydropyridine), 5.42(s, 2H, NH₂), 6.37(s, 1H, C₃-H of coumarin), 6.91(d, 1H, J=8.0 Hz,Ar-H), 7.32(d, 1H,J= 8.0 Hz, Ar-H), 7.41(d, 1H, J=4.0 Hz,Ar-H), 7.48(d, 1H, J=8 Hz, Ar-H), 7.56(d, 3H,J= 12Hz, Ar-H), 7.78 (m, 2H, Ar-H) 8.29(d,1H, J=8.0 Hz, Ar-H); ¹³C-NMR (100 MHz, DMSO- d_6) δ ppm: 35.07(C₄-CH of DHP), 53.38(OCH₃ of ester), 54.12(OCH₃ of ester), 56.47, 101.01, 111.80, 113.25, 116.00, 116.76(CN), 119.37, 122.16, 125.17, 125.84, 126.46, 127.35, 130.49, 133.17, 135.27, 139.23, 141.78, 142.48, 152.07, 155.89, 157.45, 159.46, 160.11, 161.83(CO of coumarin), 162.54(CO of ester), 164.92(CO of ester); Anal. Calc. for C₂₉H₂₀ClN₃O₆: C, 64.27; H, 3.72; N, 7.75. Found: C, 64.31; H, 3.70; N, 7.76. GC-MS (m/z):541 (M+).

TRUSPEC

Name	Mass	Method	Analysis Date	Carbon %	Hydrogen %	Nitrogen %
6a	0.0404	ASTM	27/ 09 / 2019	66.27	4.47	8.91
			10:48:53 AM			
6b	0.0421	ASTM	27 / 09 / 2019	67.36	5.02	8.44
			11:10:21 AM			
6c	0.0342	ASTM	27 / 09 / 2019	61.78	3.96	8.36
			11:20:49 AM			
6d	0.0413	ASTM	27 / 09 / 2019	66.26	4.48	8.96
			11:25:55 AM			
6e	0.0452	ASTM	27 / 09 / 2019	67.35	5.06	8.46
			12:30:23 PM			
6f	0.0435	ASTM	30 / 09 / 2019	61.75	3.96	8.35
			11:27:39 AM			
6g	0.0324	ASTM	30 / 09 / 2019	62.69	4.45	8.16
			11:35:42 AM			
6h	0.0391	ASTM	30 / 09 / 2019	65.28	4.85	8.19
			11:52:48 AM			
6i	0.0418	ASTM	01 / 10 / 2019	59.86	3.85	8.09
			12:06:32 PM			
6j	0.0428	ASTM	01 / 10 / 2019	68.68	4.15	8.31
			12:17:55 PM			
6k	0.0426	ASTM	03 / 10 / 2019	69.58	4.65	7.87
			11:24:48 AM			
6I	0.0431	ASTM	03 / 10 / 2019	64.30	3.70	7.79
			12:08:35 PM			
6m	0.0425	ASTM	04 / 10 / 2019	68.69	4.15	8.30
			12:15:54 PM			
6n	0.0409	ASTM	04 / 10 / 2019	69.56	4.67	7.87
			12:18:41 PM			
60	0.0422	ASTM	04 / 10 / 2019	64.31	3.70	7.76
			12:24:47 PM			

Page 1 of 1

Figure –S3: CHN Analysis of compounds 6a-60

Spectrum No. 1: IRof compound 6a

Spectrum No. 2: GCMSof compound 6a

Spectrum No. 3: ¹H-NMRof compound 6a

Spectrum No. 4: D₂O spectrum exchange of compound **6a** in DMSO-d₆

Spectrum No. 5: ¹³C-NMRof compound 6a

Spectrum No. 6: IRof compound 6b

Spectrum No. 7: GCMSof compound 6b

Spectrum No. 8: ¹H-NMRof compound 6b

Spectrum No. 9: ¹³C-NMRof compound **6b**

Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(6-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6c)

Spectrum No. 10: IRof compound 6c

Spectrum No. 11: GCMSof compound 6c

Spectrum No. 12: ¹H-NMRof compound 6c

Dimethyl 6-amino-5-cyano-4-(7-methyl-2-oxo-2H-chromen-4-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6d)

Spectrum No. 13: IRof compound 6d

Spectrum No. 14: GCMSof compound 6d

Spectrum No. 15: 1H-NMRof compound 6d

Spectrum No. 16: ¹³C-NMR of compound 6d

Spectrum No. 17: D₂O exchangeof compound 6d

Dimethyl 6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(7-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6e)

Spectrum No. 18: IRof compound 6e

Spectrum No. 19: ¹H-NMRof compound 6e

Spectrum No. 20: ¹³C-NMRof compound **6e**

Dimethyl-6-amino-1-(4-chlorophenyl)-5-cyano-4-(7-methyl-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6f)

Spectrum No. 21: IRof compound 6f

ESPHO 1
PROCNO 20
PROCNO

m No. 22: ¹H-NMRof compound 6f

Spectru

MASS REPORT

Spectrum No. 23: LCMSof compound 6f

Dimethyl-6-amino-5-cyano-4-(6-methoxy-2-oxo-2H-chromen-4-yl)-1-(4-methoxyphenyl)-1,4-dihydropyridine-2,3-dicarboxylate (6g)

Spectrum No. 24: IRof compound 6g

Spectrum No. 25: ¹H-NMRof compound 6g

MASS REPORT

Spectrum No. 26: LCMSof compound 6g

Dimethyl 6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(6-methoxy-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6h)

Spectrum No. 27: IRof compound 6h

Spectrum No. 28: GCMSof compound 6h

Spectrum No. 29: ¹H-NMRof compound 6h

Spectrum No. 30: ¹³C-NMRof compound 6h

Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(6-methoxy-2-oxo-2H-chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6i)

Spectrum No. 31: IRof compound 6i

Spectrum No. 32: ¹H-NMRof compound 6i

MASS REPORT

Analysed By Instrument Code: SC/AD/10-002

Spectrum No. 33: LCMSof compound 6i

Dimethyl 6-amino-5-cyano-4-(3-oxo-3H-benzo[f]chromen-1-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6j)

Spectrum No. 34: IRof compound 6j

Spectrum No. 35: GCMSof compound 6j

Spectrum No. 36: ¹H-NMRof compound 6j

Spectrum No. 37: ¹³C-NMRof compound **6j**

Dimethyl-6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(3-oxo-3H-benzo[f]chromen-1-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6k)

Spectrum No. 38: IRof compound 6k

Spectrum No. 39: ¹H-NMRof compound 6k

MASS REPORT

Data File: 5067355.D Method: VYDACPOL.M

Sample Name: C -35 Instrument: LC-MSD-Trap-XCT

Analysed By Instrument Code : SC/AD/10-002

Spectrum No. 40: GCMSof compound 6k

Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(3-oxo-3H-benzo[f]chromen-1-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6l)

Spectrum No. 41: IRof compound 61

Spectrum No. 42: GCMSof compound 61

Spectrum No. 43: 1 H-NMRof compound 61

Spectrum No. 44: ¹³C-NMRof compound 61

Dimethyl 6-amino-5-cyano-4-(2-oxo-2H-benzo[h]chromen-4-yl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (6m)

Spectrum No. 45: IRof compound 6m

Spectrum No. 46: ¹H-NMRof compound **6m**

Spectrum No. 47: ¹³C-NMRof compound **6m**

Dimethyl 6-amino-5-cyano-1-(3,4-dimethylphenyl)-4-(2-oxo-2H-benzo[h]chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (6n)

Spectrum No. 48: IRof compound 6n

Spectrum No. 49: ¹H-NMRof compound 6n

MASS REPORT

Data File: 5086394.D Method: VYDACPOL.M

Sample Name: C 8-55 Instrument: LC-MSD-Trap-XCT

Analysed By : Instrument Code : SC/AD/10-002

Spectrum No. 50: LCMSof compound 6n

Dimethyl 6-amino-1-(4-chlorophenyl)-5-cyano-4-(2-oxo-2H-benzo[h]chromen-4-yl)-1,4-dihydropyridine-2,3-dicarboxylate (60)

Spectrum No. 51: IRof compound 60

Spectrum No. 52: ¹H-NMRof compound 60

MASS REPORT

Spectrum No. 53: GCMSof compound 60

Biological protocol

In vitro antimicrobial activity

Minimum Inhibitory Concentration Determination

The MIC values were measured by the broth dilution method. A stock solution (10.24 μ g/mL) of each tested compound in dimethyl sulfoxide (DMSO) were prepared and then diluted with Mueller-Hinton broth to 1024 μ g/mL. The strains were grown briefly at 37 °C in Mueller-Hinton media. After 5 h of bacterial growth, the bacterial culture was diluted to obtain a concentration of 5 X10⁵ cells/mL. Then, 150 μ L bacterial and fungal suspensions were added to each well of the flat-bottomed 96-well tissue culture plate. Two-fold serial dilutions were carried out from the fist well to the tenth well; the final concentrations of the compounds ranged from 1-512 μ g/mL; and excess media (150 μ L) were discarded from the last well. The plates were incubated at 37 °C for 24 h. The MIC of the sample showing no turbidity was recorded as the lowest concentration of compound that inhibited bacterial growth completely. The test organisms are then added to the dilutions of the products, incubated, and scored for growth. Ampicillin, Gentamycin and Amphotericin-B were used as positive controls in the assay.

In vitro anti-inflammatory activity

Anti-inflammatory activity of newly synthesized compounds **6(a-o)** was evaluated by protein denaturation method. Diclofenac sodium is a powerful non steroidal anti-inflammatory drug which was used as a standard drug. The reaction mixture consisting of 2mL of known concentration of compound **6(a-o)**(100 µg/mL) or standard Diclofenac sodium (100 and 200 µg/mL) and 2.8 mL of phosphate buffered saline (pH 6.4) was mixed with 2 mL of egg albumin (from fresh hen's egg) and incubated at (27±1) °C for 15 min. Denaturation was induced by keeping the reaction mixture at 70 °C in a water bath for 10 min. After cooling, the absorbance was measured at 660 nm by using double distilled water as blank. Each experiment was done in triplicate and the average was taken. The percentage inhibition of protein denaturation was calculated by using the following formula.

% inhibition=
$$\frac{At}{\underline{A}} \frac{\underline{A}}{\underline{c}} \times 100$$

Where, A_t =absorbance of test sample; A_c =absorbance of control.

Molecular Docking study

Molecular docking was used to clarify the binding mode of the compounds to provide straightforward information for further structural optimization. The crystal structure of the twinned 3.35A structure of *S. aureus* Gyrase complex with ciprofloxacin and DNA (PDB ID: 2XCT) was extracted from the Brookhaven Protein Database (PDB http://www.rcsb.org/pdb). The proteins were prepared for docking by adding polar hydrogen atom with Gasteiger-Huckel charges and water molecules were removed. The 3D structure of the ligands was generated by the SKETCH module implemented in the SYBYL program (Tripos Inc., St. Louis, USA) and its energy-minimized conformation was obtained with the help of the Tripos force field using Gasteiger-Huckel charges and molecular docking was performed with Surflex-Dock program that is interfaced with Sybyl-X 2.0. and other miscellaneous parameters were assigned with the default values given by the software.

Figure S4. Docked view of all the compounds at the active site of the enzyme (PDB ID: 2XCT)

As depicted in the **Figure S5**, the compound **6d** showed three bonding interactions at the active site of the enzyme (PDB ID: 2XCT). The carboxylate group of oxygen atom present at the 3rd position of dihydropyridine ring makes one hydrogen bonding interaction with U/SER1084 (C=O···H-U/SER1084, 1.91 Å) amino acid residue. Coumarin ring oxygen atom raises one hydrogen bonding interaction with U/DA7 (O···H-U/DA7, 2.11 Å) amino acid residue. Whereas, another hydrogen bonding interaction raised from the hydrogen atom of

amino group present on the 6th position of dihydropyridine ring with nitrogen of X/DC13 (NH···N-X/DC13, 2.88 Å) amino acid residue.

Figure S5. Docked view of compound 6d at the active site of the enzyme (PDB ID: 2XCT)

Figure S6. Docked view of all the compounds at the active site of the enzyme PDB ID: 4PH9

From **Figure S7(A-C)** we noticed that three hydrogen bonding interactions compound **6e** with at the active site of the enzyme (PDB ID: 4PH9). The 3rd position oxygen atom of carboxylate group of dihydropyridine ring makes a hydrogen bonding interaction with hydrogen

of ARG121 (C-O---H-AR121, 2.63 Å). Similarly, oxygen atom of carboxylate group present at the 2nd position of dihydropyridine ring makes a hydrogen bonding interaction with hydrogen of SER354 (C=O----H-SER354, 2.61 Å) amino acid and remaining one hydrogen bonding interaction raised from the nitrogen atom of cyano group present on the 5th position of dihydropyridine ring with oxygen of SER531 (CN----H-SER531, 2.73 Å) amino acid residue.

Figure S7. Docked view of compound 6e at the active site of the enzyme PDB: 4PH9

Table S1.Surflex Docking score (kcal/mol) of the coumarin derivatives

Compounds	С	Crash	Polar	D Score ^d	PMF	G Scoref	Chem
	Scorea	Scoreb	Score		Score		Scoreg
6a	8.31	-4.20	3.34	-165.868	-158.030	-270.196	-24.632
6b	4.81	-6.13	2.42	-124.200	-85.819	-279.366	-16.769
6c	7.25	-4.40	3.57	-173.634	-176.010	-335.546	-25.217
6d	8.75	-3.62	3.73	-166.662	-168.050	-331.586	-26.724
6e	4.93	-8.05	3.14	-188.133	-160.957	-346.224	-35.964
6f	8.56	-4.12	3.59	-172.527	-163.355	-347.889	-27.511
6g	4.82	-6.64	5.44	-141.575	-135.090	-175.568	-35.160
6h	7.60	-5.29	3.48	-197.618	-196.541	-310.450	-27.625
6i	5.84	-5.91	3.66	-198.023	-187.498	-313.446	-28.512
6j	7.30	-4.83	2.28	-199.093	-172.946	-307.852	-24.117
6k	6.11	-5.09	0.72	-212.041	-165.519	-383.404	-22.908
61	5.34	-8.28	3.18	-214.539	-169.672	-350.267	-32.677
6m	5.59	-6.36	5.00	-169.452	-154.595	-285.944	-25.352
6n	5.06	-6.19	4.69	-166.515	-146.057	-278.263	-23.561
60	7.12	-3.48	0.02	-190.946	-105.612	-328.526	-18.046
Ciprofloxacin	10.32	-1.82	5.96	-105.008	-99.252	-199.166	-25.901

^a C Score (Consensus Score) integrates a number of popular scoring functions for ranking the affinity of ligands bound to the active site of a receptor and reports the output of total score.

^b Crash-score revealing the inappropriate penetration into the binding site. Crash scores close to 0 are favorable. Negative numbers indicate penetration.

^c Polar indicating the contribution of the polar interactions to the total score. The polar score may be useful for excluding docking results that make no hydrogen bonds.

^d D-score for charge and van der Waals interactions between the protein and the ligand.

^e PMF-score indicating the Helmholtz free energies of interactions for protein-ligand atom pairs (Potential of Mean Force, PMF).

^f G-score showing hydrogen bonding, complex (ligand-protein), and internal (ligand-ligand) energies.

^g Chem-score points for H-bonding, lipophilic contact, and rotational entropy, along with an intercept term.

Table S2. Surflex Docking score (kcal/mol) of the derivatives

	C	Crash	Polar	d	PMF		Chem	
Compounds	Score ^a	Score ^b	Score	D Score ^d	Score ^e	G Scoref	Score ^g	
Ibuprofen	10.80	-0.73	4.42	-120.694	-30.190	-233.808	-34.764	
6a	8.60	-21.18	0.01	-223.576	-87.876	-387.312	-46.830	
6b	7.56	-33.21	0.91	-265.444	-11.734	-462.850	-52.426	
6c	8.12	-26.79	0.01	-240.979	-88.320	-404.211	-50.108	
6d	9.01	-18.35	1.46	-219.762	-57.502	-349.507	-47.656	
6e	9.02	-19.06	0.02	-237.647	-21.375	-432.821	-45.403	
6f	8.80	-21.76	0.87	-245.654	-71.905	-409.981	-52.967	
6g	6.98	-36.38	1.06	-251.753	10.780	-402.935	-44.211	
6h	8.02	-28.15	0.03	-252.555	-57.106	-449.275	-53.388	
6i	8.52	-25.45	1.12	-241.264	-87.191	-403.294	-49.873	
6j	6.54	-58.28	0.54	-246.834	64.110	-357.959	-55.631	
6k	7.12	-35.00	0.24	-252.075	-51.147	-444.399	-58.909	
61	6.82	-44.78	0.02	-255.006	-6.749	-350.270	-55.667	
6m	9.01	-19.14	0.00	-238.648	-114.499	-437.796	-52.914	
6n	6.90	-43.81	0.00	-261.734	-78.808	-433.449	-59.705	
60	7.24	-30.18	0.01	-257.653	-34.100	-415.336	-52.087	

^a C Score (Consensus Score) integrates a number of popular scoring functions for ranking the affinity of ligands bound to the active site of a receptor and reports the output of total score.

^b Crash-score revealing the inappropriate penetration into the binding site. Crash scores close to 0 are favorable. Negative numbers indicate penetration.

^c Polar indicating the contribution of the polar interactions to the total score. The polar score may be useful for excluding docking results that make no hydrogen bonds.

^d D-score for charge and van der Waals interactions between the protein and the ligand.

^e PMF-score indicating the Helmholtz free energies of interactions for protein-ligand atom pairs (Potential of Mean Force, PMF).

^f G-score showing hydrogen bonding, complex (ligand-protein), and internal (ligand-ligand) energies.

^g Chem-score points for H-bonding, lipophilic contact, and rotational entropy, along with an intercept term.