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Mathematical modelling
Appendix A
To prove Lemma (4.3.1.1)

Proof. Let (R,S, P) be solution with positive initial values (R,,S,,P,). From system (4.3.1),

we get

dR

— <A, -h —uR. Al
dt 1 c ,Ll ( )

According to comparison principle, it follows that

= M (A.2)

R, is always positive if 4, > h,,..



Now from the system (4.3.1), we get

ds
<A —h — S, (A.3)

According to comparison principle again, we get

§ =22 Te (A.4)

S, is always positive if A4, > h,,
Again from the system (4.3.1),we have

dP PR.Su y _p P (A5)
dt a
According to comparison principle again, we get

P :,BRm Sm+ahc.
ap,

(A.6)

This completes the proof of lemma.

Appendix B

For finding the condition of global stability at E(R*,S*,P*)in region Q we construct the

Lyapunov function

H:%(R—R*)z+%(S—S*)2+%(P—P*)2. (B.1)

Differentiating A with respect to time ¢ along the solutions of the system (4.3.1), we get

dH N\dR \dS A\dP
E_(R—R )E+(S—S )E+(P—P )E' (B.2)



Using system of equations (4.3.1), we get after some algebraic manipulations as

*

dH aoS 22 aR “\2 2
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apf S . .\ PR .
Rl (R-K)(P-P )+a+R* (s-5)(P-P).

Then d—Hto be negative definite, the following inequality must hold.

dt
as Y a’R’S"
a
R o 2 , B.4
( m+ia+R*iJ ) (a+R*Xa+Rm) (B4)

(o) ey e

a+R’) +R Ja+R,)
R ) . aR'p
(a+R*J <2(a+R*)' (B.6)

This shows that equilibrium point E(R*,S*,P*) is globally stable in the region Q.

Appendix C

From first equation of the system (4.3.1), we have

dR
EZAl—hC —(a S, +u)R,

According to lemma 4.3.1.1 and comparison principle, it follows that

— Al_hl

R = :
aS, +u

(C.2)

min

(C.1)



With condition 4, > A,., R, remains always positive. From second equation of the system

min

(4.3.1) , we have

c;—fZAz—hc—(aRm+,ul)S, (C.3)

According to lemma 4.3.1.1 and comparison principle, it follows that

A, —h, .4

S =
aRm+ﬂ1

min

With condition 4, > A, S, remains always positive.

From the second last equation of the system (4.3.1) , we have

dP _ PR S
—>L_mn-mh L — 3P, C5
dt a+R, e (€5

Using comparison principle, it follows that

_ B RyoSun +(a+R, ),

P min™~ min

min (a—l—Rm) A (C6)

This completes the proof of the theorem. Thus, system (4.3.1) persists if 4, > A, and
A2 > hlc

4.3.1 Boundedness of the System

In the following lemma, we state the bounds of the various variables which would be needed

in our study.

Lemma(4.3.1.1) The setQ ={(R,S,P):0<R<R,0<S<S, and0<P<P,} is the region

of attraction for all solutions initiating in the interior of the positive octant,

where R, :Al;hC,Sm = 4, —h, and P, :M with

H Hy a B,
conditions 4, > h,_, A, > h,_..For proof, see Appendix A.




4.3.2 Equilibrium Analysis:
The system (4.3.1) has only one nonnegative equilibrium point E(R*,S*,P*).

Here R", S and P" are the positive solutions of the following equations:

* *

aR S .

4-282  R —h =0, (4.3.2.1)
a+R

4, 2RSS s on =0, (4.3.22)
a+R

RS Ly _pP =0, (4.3.2.3)

From equations (4.3.2.2) and (4.3.2.3), we get

*:,BR*S*+hc(a+R*) o - (4,—h Ya+R")

L P R Sy g

(4.3.2.4)

Putting the value of P"and S from the equation (4.3.2.4) in the equation (4.3.2.1), we get

following equation

F(R*): pR? + p,R? + p,R + p, =0. (4.3.2.5)
Where p, = ula + 1),

P, =4y, =)o+ pa+ pala+ ) (4, —h Na+ ),

Py = (4, = h ) a+ pua® — (4 —h wa— (4 — b, Ne + ) a,

py =4, —h. )ma’.

From (4.3.2.5), we have

F(0)=—(4, —h )ua® <0 . (4.3.2.6)
F(R,)=pR} + p,R% + psR, + p, >0. (4.3.2.7)

Thus there existsa R*,0<R" <R _,suchthat F(R") =0.

m



Now, the sufficient condition for the uniqueness of E is F'(R* )> 0 .For this we
find F'(R* )> 0 from (4.3.2.5) as follows.

F'(R,)=3p,R2 +2p,R, + p, >0.(4.9.2.8)
This completes the existence of E.

4.3.3.1 Local Stability

To discuss the local stability of system (4.3.1) as follows,

Where the entries in the matrix are

o =_ aa S e =— aR’ o = aa'S o =_ aR’ B
11 (a+R*)2 Hi€ép ar R (a+R*)2’ 22 ut R Hys
_ aps _ R

€31 (a+R*)2 163 = AR ve33 = =[5

The characteristic polynomial corresponding to equilibrium point E(R*,S*,P*) is given by
A+ q A +q,A+q5 =0,

where g, =—ey; =€, — 33,4, = €116y + €165 +€2€33 = €1,€1,q3 = €,€2,€33 — €1, €3.

Then by Routh-Hurwitz criteria equilibrium point E(R*,S*,P*) is locally asymptotically

stable if ¢, > 0,9, >0 and ¢,q, > ¢g,and unstable if either of these conditions is not satisfied.



4.3.3.2 Global Stability

The following theorem characterizes the global stability behaviour of equilibrium

point E(R*,S", P").

Theorem 4.3.3, Let the following inequalites hold:

2 2 * *
(R” as, ] <2( aa’R’S
a

(a+R") +R Ja+R,)’

BS. | aaf},S”
(a+R*) (a+R*Xa+Rm)1

( ,BR**J <20cR*,Bf.
a+R (a+R)

Then equilibrium point E(R*,S*,P*) is globally stable in the regionQ. For proof, see
Appendix B.

4.3.4 Persistence

Theorem 4.9.4 Assume that 4, > h and 4, > h_. Then system (4.3.1) persists. For proof, see
Appendix C.
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Figure S1. Stable behavior of R, S and P with time and other parameter values are same as
(4.9.2).
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Figure S2. Global behavior of the System.
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Figure S3. Effect of moisture on the reaction.
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Figure S4. Stability behavior of the system in 3D view.



