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Mathematical modelling 

Appendix A 

To prove Lemma (4.3.1.1) 

Proof. Let ( )PSR ,,  be solution with positive initial values ( )000 ,, PSR . From system (4.3.1), 

we get  
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According to comparison principle, it follows that  
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mR  is always positive if  chA 11 > . 



Now from the system (4.3.1), we get  
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According to comparison principle again, we get  
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mS  is always positive if  chA 12 >  

Again from the system (4.3.1),we have  
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 According to comparison principle again, we get  

.
 

   =
0β

β
a

haSRP cmm
m

+  (A.6) 

 This completes the proof of lemma.  

Appendix B 

For finding the condition of global stability at ( )*** ,, PSRE in region Ω  we construct the 

Lyapunov function  
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 Differentiating H  with respect to time t  along the solutions of the system (4.3.1), we get  
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Using system of equations (4.3.1), we get after some algebraic manipulations as  
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 Then 
dt
dH to be negative definite, the following inequality must hold.  
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This shows that  equilibrium point ( )*** ,, PSRE  is globally stable in the regionΩ .  

Appendix C 

From first equation of the system (4.3.1), we have  

( ) ,  1 RShA
dt
dR

mc μα +−−≥                                                                                               (C.1) 

 According to lemma 4.3.1.1 and comparison principle, it follows that  
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 With condition chA 11 > , minR  remains always positive.  From second equation of the system 

(4.3.1) , we have  
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 According to lemma 4.3.1.1 and comparison principle, it follows that  
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With condition chA 12 > , minS  remains always positive. 

From the second last equation of the system (4.3.1) , we have  
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 Using comparison principle, it follows that  
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This completes the proof of the theorem. Thus, system (4.3.1) persists if chA 11 > and 

chA 12 >  

4.3.1 Boundedness of the System 

In the following lemma, we state the bounds of the various variables which would be needed 

in our study.   

Lemma(4.3.1.1) The set ( ){ },0 and ,00:,,= mmm PPSSRRPSR ≤≤≤≤≤≤Ω  is the region 

of attraction for all solutions initiating in the interior of the positive octant, 
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4.3.2  Equilibrium Analysis: 

 The system (4.3.1) has only one nonnegative equilibrium point ( )*** ,, PSRE . 

Here ,*R *S  and *P are the positive solutions of the following equations:  
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 From equations (4.3.2.2) and (4.3.2.3), we get  
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Putting the value of  *P and *S from the equation (4.3.2.4) in the equation (4.3.2.1), we get 

following equation 
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Where ( ),11 μαμ +=p  
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Thus there exists a ,*R ,0 *
mRR << such that .0)( * =RF  



Now, the sufficient condition for the uniqueness of E  is ( ) 0 *' >RF .For this we 
find ( ) 0 *' >RF  from (4.3.2.5) as follows. 
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This completes the existence of .E  

4.3.3.1 Local Stability 

To discuss the local stability of system (4.3.1) as follows,  
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Where the entries in the matrix are  
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The characteristic polynomial corresponding to equilibrium point ( )*** ,, PSRE  is given by 
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Then by Routh-Hurwitz criteria equilibrium point ( )*** ,, PSRE  is locally asymptotically 

stable if 0,0 21 >> qq  and 321 qqq > and unstable if either of these conditions is not satisfied. 



4.3.3.2 Global Stability 

The following theorem characterizes the global stability behaviour of equilibrium 

point ( )*** ,, PSRE .   

Theorem 4.3.3, Let the following inequalites hold:  
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Then equilibrium point ( )*** ,, PSRE  is globally stable in the regionΩ . For proof, see 

Appendix B.   

4.3.4 Persistence 

Theorem 4.9.4 Assume that chA >1 and chA >2 . Then system (4.3.1) persists. For proof, see 

Appendix C.   
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Figure S1. Stable behavior of  SR, and P with time and other parameter values are same as 

(4.9.1).  
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   Figure S2. Global behavior of the System. 
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Figure S3. Effect of moisture on the reaction. 
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Figure S4. Stability behavior of the system in 3D view. 

 
 


