

Indian Journal of Chemistry Vol. 61, December 2022, pp. 1257-1263 DOI: 10.56042/ijc.v61i12.69441



# Synthesis of 2-[{2-(1-Acyl-3-aryl-4,5-dihydro-1*H*-pyrazol-5-yl)phenoxy}methyl]-5-aryl-1,3,4-oxadiazoles and related compounds as potential pesticides

Chhavi Saini & Naresh K Sangwan\*

Department of Chemistry, CCS Haryana Agricultural University, Hisar 125 004, India

\*E-mail: nksangwan@gmail.com

Received 14 May 2021; accepted (revised) 18 November 2022

Cyclization of substituted chalkones **3a,b** with hydrazine hydrate followed by acylation of the resulting 3-aryl-4,5dihydro-5-(2-hydroxyphenyl)-1*H*-pyrazoles (**4a,b**) with alkanoic acids furnished 1-acyl-3-aryl-4,5-dihydro-5-(2hydroxyphenyl)-1*H*-pyrazoles (**5a-d**). The compounds **5a-d** are also directly prepared by refluxing **3a,b** with hydrazine hydrate in alkanoic acids. Alkylation of **5a-d** with ethyl chloroacetate yields the corresponding aryloxyacetates **6a-d**. Aminolysis of the ester **6a-d** results in the formation of corresponding substituted aryloxyacetamides **7a-f**. Hydrazinolysis of esters **6a-d** with hydrazine hydrate followed by cyclization of the resulting aryloxyacetic acid hydrazides **8a-d** with aromatic acids in refluxing POCl<sub>3</sub> affords the title compounds **9a-t**. The compounds **3-9** have been evaluated for their *in vitro* growthinhibitory activity against four fungal pests, *Alternaria helianthus, Colletotrichum falcatum, fusarium oxysporum* and *Rhizoctonia solani*. Many of the compounds have displayed promising activity at different concentrations ranging from  $3.13 - 100 \text{ mg L}^{-1}$ .

Keywords: Dihydropyrazoles, Oxadiazoles, Pyrazolyloxadiazoles, Antifungal activity, Pesticidal activity

of 3,5-diaryl-4,5-dihydro-1H-The derivatives pyrazoles (A) have gained the reputation as useful agrochemicals for their various pesticidal and related activities like antifungal, antibacterial, insecticidal etc.<sup>1-7</sup> 2-Aryl-5-aryloxymethyl-1,3,4-oxadiazoles (**B**) are also reported to posses useful biological activities.<sup>8-16</sup> With a hope to improve upon the activity of such compounds, we report, herein, the synthesis of the hitherto unknown title compounds 2-[{2-(1-acyl-3-aryl-4,5-dihydro-1*H*-pyrazol-5-yl)phenoxy}methyl]-5-aryl-1,3,4-oxadiazoles (9) and related derivatives which incorporate structural features of both A and B and their in vitro growthinhibitory activity against some fungal pests (Fig. 1).

## **Experimental Details**

The melting points were determined in open glass capillaries on an electrically heated melting point apparatus and are uncorrected. Homogeneity of the compounds was routinely checked on silica gel G TLC plates using hexane - ethyl acetate or methanol ethyl acetate mixtures as irrigants. The IR spectra in KBr pallets were recorded on a Perkin-Elmer infrared spectrophotometer model 621 and frequencies are expressed in cm<sup>-1</sup>. The <sup>1</sup>H NMR spectra were recorded on a Bruker AC 300 F instrument (300 MHz) in

deuterochloroform or otherwise indicated using tetramethylsilane as an internal reference and chemical shifts are expressed in  $\delta$  values. The compounds were analyzed for C, H and N and the values were found within  $\pm 0.4\%$  of the theoretical values.

The representative examples of synthetic methods adopted for preparation of various compounds (Scheme 1) are described below. Other analogs are prepared using similar methods from appropriate starting compounds. The compounds showed expected spectral characteristics. However, only those spectral data, which have a direct relevance towards structural elucidation, are included here. The characterization data of the compounds is given in Table 1.

**2-Hydroxy-4'-methylchalkone (3b)**: A mixture of 4-methylacetophenone (**1b**, 13·4 g, 0.1 mol) and salicylaldehyde (**2**, 12.2 g, 0.1 mol) was added to a cold (10°C) methanolic solution of potassium hydroxide (5.6%, 200 mL) with constant stirring. The stirring was continued for 48 h. The reaction mixture was diluted with water, and acidified with dilute sulfuric acid. The solid, thus separated, was filtered, washed with water, dried and recrystallized from methanol to give 11.9 g of **3b**, yield 50%, m.p. 160°C. <sup>1</sup>H NMR : 2.42 (s, 3H, CH<sub>3</sub>), 6.86 [dd (t), 1H, H-5,



Fig. 1 — Structure of compound A, B and 9

J = 8 and 8 Hz), 6.96 (d, 1H, H-3, J = 8 Hz), 7.21 (ddd, 1H, H-4, J = 2, 8 and 8 Hz), 7.29 (d, 2H, H-3' and H-5', J = 8 Hz), 7.56 (dd, 1H, H-6, J = 2 and 8 Hz), 7.71 (dd, 1H, H- $\alpha$ , J = 16 Hz), 7.93 (dd, 2H, H-2' and H-6', J = 8 Hz), 8.09 (d, 1H, H- $\beta$ , J = 16 Hz); IR:3125 (OH), 1640 C=O). Anal. Calcd. for C<sub>16</sub>H<sub>14</sub>O<sub>2</sub>: C, 80.65; H, 5.92%. Found C, 80.81; H 6.04.

**4,5-Dihydro-5-(2-hydroxyphenyl)-3-phenyl-1***H*-**pyrazole (4a):** A solution of **3a** (11.2 g, 0.05 mole) in methanol 50 mL was refluxed with hydrazine hydrate (6 mL, excess) for 14 h. The reaction mixture was cooled and poured onto crushed ice with stirring. The solid, thus separated, was filtered, washed with water,



Scheme 1 — Synthesis of pyrzolylphenocmethyloxadizoles

| Compd.<br>No. | $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> or NXY | Molecular<br>formula                                          | Yield<br>(%)    | m.p.<br>(°C) | MIC (mg L <sup>-1</sup> ) against <sup>a</sup> |             |              |              |
|---------------|----------------|----------------|-----------------------|---------------------------------------------------------------|-----------------|--------------|------------------------------------------------|-------------|--------------|--------------|
|               |                |                |                       |                                                               |                 |              | A. helianthus                                  | C. falcatum | F. oxysporum | R. solan     |
| a             | Н              | -              | -                     | $C_{15}H_{12}O_2$                                             | 80              | 155          | 50                                             | 50          | 3.13         | 25           |
| b             | Me             | -              | -                     | $C_{16}H_{14}O_2$                                             | 50              | 160          | 100                                            | 100         | 50           | 50           |
| a             | Н              | -              | -                     | $C_{15}H_{14}N_2O$                                            | 84              | 190          | 50                                             | 100         | 50           | 100          |
| b             | Me             | -              | -                     | $C_{16}H_{16}N_2O$                                            | 80              | 163          | 50                                             | 100         | 25           | 50           |
| a             | Н              | Me             | -                     | $C_{17}H_{16}N_2O_2$                                          | 64 <sup>b</sup> | 247          | 100                                            | 100         | 100          | 100          |
| b             | Me             | Me             | -                     | $C_{18}H_{18}N_2O_2$                                          | 75 <sup>b</sup> | 167          | 100                                            | 100         | 50           | 50           |
| c             | Н              | Et             | -                     | $C_{18}H_{18}N_2O_2$                                          | 74 <sup>b</sup> | 216          | -                                              | -           | -            | 50           |
| d             | Me             | Et             | -                     | $C_{19}H_{20}N_2O_2$                                          | 50 <sup>b</sup> | 90           | 25                                             | 50          | 100          | 100          |
| a             | Н              | Me             | -                     | $C_{21}H_{22}N_2O_4$                                          | 80              | 186          | -                                              | -           | 50           | -            |
| b             | Me             | Me             |                       | $C_{22}H_{24}N_2O_4$                                          | 82              | 105          | 50                                             | 100         | 25           | 100          |
| c             | Н              | Et             | -                     | $C_{22}H_{24}N_2O_4$                                          | 67              | 106          | 100                                            | _           | 25           | 100          |
| d             | Me             | Et             | -                     | $C_{23}H_{26}N_2O_4$                                          | 53              | 90           | 100                                            | 100         | 100          | 100          |
| a             | Н              | Me             | NHCHMe <sub>2</sub>   | $C_{22}H_{25}N_3O_3$                                          | 69              | 170          | 100                                            | 100         |              | 100          |
| b             | Me             | Me             |                       | $C_{23}H_{25}N_{3}O_{3}$                                      | 68              | 145          | 50                                             | 50          | 100          | -            |
| c             | Н              | Et             |                       | $C_{23}H_{27}N_3O_3$                                          | 71              | 145          | -                                              | -           | -            | -            |
| d             | Me             | Et             |                       | $C_{23}H_{27}N_{3}O_{3}$<br>$C_{24}H_{29}N_{3}O_{3}$          | 65              | 135          | 100                                            | 50          | 100          | 50           |
| e             | Н              | Me             |                       | $C_{24}H_{27}N_3O_3$                                          | 60              | 127          | 50                                             | 100         | -            | 100          |
| L             | 11             | Wie            | -N                    | 024112/10303                                                  | 00              | 127          | 50                                             | 100         |              | 100          |
| f             | Me             | Me             | -N                    | $C_{25}H_{29}N_3O_3$                                          | 56              | 132          | 100                                            | -           | -            | 100          |
| g             | Н              | Et             | -N                    | $C_{25}H_{29}N_3O_3$                                          | 67              | 92           | 100                                            | 12.5        | 6.25         | -            |
| h             | Me             | Et             | -N                    | $C_{26}H_{31}N_3O_3$                                          | 68              | 120          | 100                                            | 100         | 100          | 100          |
| i             | Н              | Me             |                       | $C_{23}H_{25}N_3O_4$                                          | 64              | 118          | -                                              | -           | -            | -            |
| j             | Me             | Me             |                       | $C_{24}H_{27}N_3O_4$                                          | 51              | gum          | 50                                             | -           | 100          | 50           |
| ′k            | Н              | Et             |                       | $C_{24}H_{27}N_3O_4$                                          | 66              | 120          | 100                                            | 100         | 50           | -            |
| 1             | Me             | Et             |                       | $C_{25}H_{29}N_3O_4$                                          | 57              | 181          | -                                              | 100         | 100          | 50           |
| a             | Н              | Me             | -                     | $C_{19}H_{20}N_4O_3$                                          | 68              | 167          | 100                                            | 100         | 12.5         | -            |
| b             | Me             | Me             | -                     | $C_{20}H_{22}N_4O_3$                                          | 68              | 160          | -                                              | 100         | 100          | 100          |
| c             | Н              | Et             | -                     | $C_{20}H_{22}N_4O_3$                                          | 90              | 175          | -                                              | 100         | 100          | 12.5         |
| d             | Me             | Et             | -                     | $C_{21}H_{24}N_4O_3$                                          | 60              | 208          | 100                                            | 100         | 100          | 25           |
| a             | Н              | Me             | Н                     | $C_{21}H_{24}H_{4}O_{3}$<br>$C_{26}H_{22}N_{4}O_{3}$          | 68              | 195          | 100                                            | 6.25        | 100          | 100          |
| a<br>b        | Me             | Me             | Н                     | $C_{26}H_{22}N_4O_3$<br>$C_{27}H_{24}N_4O_3$                  | 65              | 220          | -                                              | 100         | 100          | 100          |
|               | H              |                | H<br>H                |                                                               |                 |              |                                                | 100         |              |              |
| с<br>d        |                | Et<br>Et       |                       | $C_{27}H_{24}N_3O_3$                                          | 60<br>65        | 145          | 100                                            |             | -            | -            |
| d             | Me             | Et<br>M-       | H                     | $C_{28}H_{26}N_4O_3$                                          | 65<br>70        | 210          | 100                                            | 100         | 100          | 100          |
| e             | H<br>M-        | Me             | $4-NO_2$              | $C_{26}H_{21}N_5O_5$                                          | 70              | 111          | 100                                            | 100         | 100          | 100          |
| f             | Me             | Me             | 4-NO <sub>2</sub>     | C <sub>27</sub> H <sub>23</sub> N <sub>5</sub> O <sub>5</sub> | 68              | 220          | -                                              | 100         | 50           | 12·5<br>(con |

Table 1 — Characterization data and antifungal activity results of 2-[{2-(1-Acyl-3-aryl-4,5-dihydro-1*H*-pyrazol-5-yl)phenoxy}

| methyl]-5-aryl-1,3,4-oxadiazoles and their intermediates                                                                                                                    |                                                                                 |    |              |                                                |    |     |               |             |              |           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----|--------------|------------------------------------------------|----|-----|---------------|-------------|--------------|-----------|--|
| Compd.<br>No.                                                                                                                                                               | R <sup>1</sup> R <sup>2</sup> R <sup>3</sup> or NXY Molecular Yield formula (%) |    | m.p.<br>(°C) | MIC (mg L <sup>-1</sup> ) against <sup>a</sup> |    |     |               |             |              |           |  |
|                                                                                                                                                                             |                                                                                 |    |              |                                                |    |     | A. helianthus | C. falcatum | F. oxysporum | R. solani |  |
| 9i                                                                                                                                                                          | Н                                                                               | Me | 4-Br         | $C_{26}H_{21}BrN_4O_3$                         | 68 | 178 | 100           | 50          | 25           | 100       |  |
| 9j                                                                                                                                                                          | Me                                                                              | Me | 4-Br         | $C_{27}H_{23}BrN_4O_3$                         | 65 | 190 | 100           | 100         | 100          | 100       |  |
| 9k                                                                                                                                                                          | Н                                                                               | Et | 4-Br         | $C_{27}H_{23}BrN_4O_3$                         | 70 | 180 | -             | 100         | 25           | 100       |  |
| 98                                                                                                                                                                          | Me                                                                              | Et | 4-Br         | $C_{28}H_{25}BrN_4O_3$                         | 72 | 205 | -             | 100         | 100          | 6.25      |  |
| 9m                                                                                                                                                                          | Н                                                                               | Me | 4-C1         | $C_{26}H_{21}C\ell N_4O_3$                     | 72 | 109 | 50            | 100         | -            | 100       |  |
| 9n                                                                                                                                                                          | Me                                                                              | Me | 4-C1         | $C_{27}H_{23}C\ell N_4O_3$                     | 65 | 170 | 100           | 12.5        | 25           | 100       |  |
| 90                                                                                                                                                                          | Н                                                                               | Et | 4-C1         | $C_{27}H_{23}C\ell N_4O_3$                     | 68 | 164 | 100           | 100         | 50           | 50        |  |
| 9р                                                                                                                                                                          | Me                                                                              | Et | 4-C1         | $C_{28}H_{25}C\ell N_4O_3$                     | 69 | 170 | 100           | 100         | 100          | 25        |  |
| 9q                                                                                                                                                                          | Н                                                                               | Me | 3-C1         | $C_{26}H_{21}C\ell N_4O_3$                     | 75 | 210 | 25            | -           | 50           | 100       |  |
| 9r                                                                                                                                                                          | Me                                                                              | Me | 3-C1         | $C_{27}H_{23}C\ell N_4O_3$                     | 70 | 195 | 100           | 100         | 100          | 25        |  |
| 9s                                                                                                                                                                          | Η                                                                               | Et | 3-C1         | $C_{27}H_{23}C\ell N_4O_3$                     | 67 | 168 | -             | 100         | 50           | 100       |  |
| 9t                                                                                                                                                                          | Me                                                                              | Et | 3-C1         | $C_{28}H_{25}C\ell N_4O_3$                     | 70 | 100 | 100           | 100         | 100          | 12.5      |  |
| Carbendazim                                                                                                                                                                 |                                                                                 |    |              |                                                |    |     | 0.79          | -           | 3.13         | 0.79      |  |
| <sup>a</sup> Dash "-" indicates that the compound was inactive upto a tested concentration of 100 mg L <sup>-1</sup> ; <sup>b</sup> Yield described is for method A. Yields |                                                                                 |    |              |                                                |    |     |               |             |              |           |  |

Table 1 — Characterization data and antifungal activity results of 2-[{2-(1-Acyl-3-aryl-4,5-dihydro-1*H*-pyrazol-5-yl)phenoxy} methyl]-5-aryl-1,3,4-oxadiazoles and their intermediates

obtained using method B for Va-d are respectively 72, 80, 68 and 65%, respectively.dried and recrystallized from methanol to give 10.0g of 4a, yield 84%, m.p. 190°C. <sup>1</sup>H NMR: 3.13 (dd,<br/>1H, trans H-4, J = 14 and 16 Hz), 3.42 (dd, 1H, cis H-4, J = 10 and 16 Hz), 4.92 (dd, 1H, H-5, J = 10 and 14<br/>Hz), 6.85 (ddd, 1H, H-5', J = 1, 8 and 8 Hz), 6.92 (dd,<br/>1H, H-3', J = 1 and 8 Hz), 7.06 (dd, 1H, H-6', J = 2<br/>and 8 Hz), 7.22 (ddd, 1H, H-4', J = 2, 8 and 8 Hz),<br/>7.38 - 7.42 (m, 3H, H-3", H-4", and H-5"), 7.65 -(20 mL) was<br/>excess) for 8<br/>worked-up as<br/>5b, yield 80<br/>prepared usin

7.69 (m, 2H, H-2" and H-6"); IR: 3000 (br band, OH, NH). Anal. Calcd. for C<sub>15</sub>H<sub>14</sub>N<sub>2</sub>O: C, 75.61; H, 5.92; N, 11.76%. Found: C, 75.82; H, 5.92; N, 11.54.

1-Acetyl-4,5-dihydro-5-(2-hydroxyphenyl)-3-(4methylphenyl)-1*H*-pyrazole (5b): Method A: A solution of 4b (2.52 g, 0.01 mol) in acetic acid (10 mL) was refluxed for 8 h. The reaction mixture was cooled and poured onto crushed ice with stirring. The separated solid was filtered, washed with water, dried, and recrystallized form methanol to give 2.21 g of 5b, yield 75%, m.p. 167°C;.<sup>1</sup>H NMR (10% DMSO-d<sub>6</sub> in CDCl<sub>3</sub> v/v): 2.40 (s, 3H, CH<sub>3</sub>), 2.41 (s, 3H, COCH<sub>3</sub>), 3.28 (dd, 1H, trans H-4, J = 4 and 18 Hz), 3.72 (dd, 1H, *cis* H-4, J = 12 and 18 Hz), 5.58 (dd, 1H, H-5, J = 4 and 12 Hz), 6.79 [dd (t), 1H, H-5', J = 8 and 8 Hz), 6.90 (d, 1H, H-3', J = 8 Hz), 6.95 (dd, 1H, H-6', J = 2 and 8 Hz), 7.11 (ddd, 1H, H-4', J = 2, 8 and 8 Hz), 7.24 (d, 2H, H-3" and H-5", J = 8 Hz), 7.66 (d, 2H, H-2" and H-6", J = 8 Hz); IR : 3130 (OH), 1620 (C=O). Anal. Calcd. for C<sub>18</sub>H<sub>18</sub>N<sub>2</sub>O<sub>2</sub>: C, 73.45; H, 6.16; N, 9.52%. Found: C, 73.70; H, 5.92; N 9.18. Method (B): A solution of **3b** (2.38 g, 0.01 mol) in acetic acid

(20 mL) was refluxed with hydrazine hydrate (2 mL, excess) for 8 h. The reaction mixture was cooled and worked-up as described in method A to give 2.35g of **5b**, yield 80%, identical in all respects with **5b** prepared using method A.

Ethyl [2-(1-acetyl-4,5-dihydro-3-phenyl-1H-pyrazole-5-yl)phenoxy]acetate (6a): А solution of 5a (2.68 g, 0.01 mol), ethyl chloroacetate (1.22 g, 0.01 mol) in dimethylformamide (20 mL) was stirred with potassium carbonate (1.38 g, 0.01 mol) for 16 h. The reaction mixture was diluted with ice-cold water, the separated solid was filtered, washed thoroughly with water and dried. The product was purified by column chromatography over silica gel using ethyl acetate: hexane mixture as eluent to give 2.92 g of 6a, yield 80%, m.p. 186°C. <sup>1</sup>H NMR: 1.29 (t, 3H, CH<sub>3</sub>, J = 7 Hz), 2.47 (s, 3H, COCH<sub>3</sub>), 3.19 (dd, 1h, trans H-4, J = 5 and 18 Hz), 3.77 (dd, 1H, *cis* H-4, J = 12 and 18 Hz), 4.24 (q, 2H,  $CO_2CH_2CH_3$ , J = 7 Hz), 4.68 (s, 2H, OCH<sub>2</sub>), 5.92 (dd, 1H, H-5, J = 5 and 12 Hz), 6.77 (dd, 1H, H-3', J = 1 and 8 Hz), 6.93 (ddd, 1H, H-5', J = 1, 8 and 8), 7.05 (dd, 1H, H-6', J = 2 and 8 Hz), 7.19 (ddd, 1H, H-4', J = 1 and 8 Hz), 7.37-7.41 (m, 3H, H-3", H-4" and H-5"), 7.72-7.75 (m, 2H, H-2" and H-6"); IR: 1730 (ester), 1640 (C=O). Anal. Calcd. for C<sub>21</sub>H<sub>22</sub>N<sub>2</sub>O<sub>4</sub>: C, 68·84; H, 6·05; N, 7·65%. Found: C, 68.56; H, 6.09; N, 7.48.

2-[2-(1-Acetyl-4,5-dihydro-3-phenyl-1*H*-pyrazol-5-yl)phenoxy]-N-isopropylacetamide (7a): A mixture of 6a (0.37 g, 0.001 mol) and isopropylamine (3 mL, excess) was allowed to stand at room temperature for 240 h. The reaction mixture was then diluted with ice-cold water. The separated solid was filtered, washed with water, dried and recrystallized from methanol to give 0.26 g of 7a, yield 69%, m.p. 170°C. <sup>1</sup>H NMR: 0.99 (d, 3H, CH<sub>3</sub>, J = 7 Hz), 1.19 (d, 3H, CH<sub>3</sub>, J = 7 Hz), 2.39 (s, 3H, COCH<sub>3</sub>), 3.23 (dd, 1H, trans H-4, J = 5 and 18 Hz), 3.75 (dd, 1H, cis H-4, J = 12 and 18 Hz), 4.15 (m, 1H, CH), 4.81 (s, 2H, OCH<sub>2</sub>), 6.50 (dd, 1H, H-5, J = 5 and 12 Hz), 6.81 (dd, 1H, H-3', J = 1 and 8 Hz), 6.95 (ddd, 1H, H-5', J = 1, 8 and 8), 7.12 (dd, 1H, H-6', J = 2 and 8 Hz), 7.22 (ddd, 1H, H-4', J = 2, 8 and 8 Hz), 7.45 (m, 3H, H-3", H-4" and H-5"), 7.77 (m, 2H, H-2" and H-6"); Anal. Calcd. for C<sub>22</sub>H<sub>25</sub>N<sub>3</sub>O<sub>3</sub>: C, 69.63; H, 6.64; N, 11.07%. Found: C, 69.61; H, 6.45; N, 10.92.

2-[2-(1-Acetyl-4,5-dihydro-3-phenyl-1H-pyrazol-5-yl)phenoxy acetic acid hydrazide (8a). A solution of **6a** (7.32 g, 0.02 mol) in methanol (60 mL) was refluxed with hydrazine hydrate (6 mL, excess) for 12 h. The reaction mixture was cooled and poured onto crushed ice with stirring. The separated solid was filtered, washed with water, dried and recrystallized from methanol to give 4.78 g of 8a, yield 68%, m.p. 167°C. <sup>1</sup>H NMR: 2.40 (s, 3H,  $COCH_3$ ), 3.22 (dd, 1H, *trans* H-4, J = 5 and 18 Hz), 3.77 (dd, 1H, cis H-4, J = 11 and 18 Hz), 4.69 (d, 1H, OCH-*H*, J = 16 Hz), 4.76 (d, 1H, OCH-*H*, J = 16 Hz), 6.01 (dd, 1H, H-5, J = 5 and 11 Hz), 6.81 (d, 1H, H-3', J = 8 Hz), 6.95 [dd (t), 1H, H-5', J = 8 and 8), 7.13 (dd, 1H, H-6', J = 1 and 8 Hz), 7.22 (ddd, 1H, H-4', J = 1, 8 and 8 Hz), 7.44 - 7.46 (m, 3H, H-3", H-4" andH-5"), 7.77 – 7.80 (m, 2H, H-2" and H-6"); Anal. Calcd. for C<sub>19</sub>H<sub>20</sub>N<sub>4</sub>O<sub>3</sub>: C, 64.76; H, 5.72; N, 15.90%. Found: C, 64.61; H, 5.68; N, 16.04.

## 2-[{2-(1-Acetyl-4,5-dihydro-3-phenyl-1*H*-pyrazol-5-yl)phenyl}methyl]-5-phenyl-1,3,4-oxadiazole

(9a): A mixture of 8a (0.35 g, 0.001 mol), benzoic acid (0.167 g, 0.001 mol) and phosphoryl chloride (6 mL, excess) was refluxed for 12 h. The reaction mixture was cooled and poured slowly into ice-water with stirring. The precipitated solid was filtered, washed with water, dried and recrystallized from ethanol to give 0.30 g of 9a, yield 68%, m.p. 195°C. <sup>1</sup>H NMR (CDCl<sub>3</sub> + DMSO-d<sub>6</sub>): 2.40 (s, 3H, COCH<sub>3</sub>), 3.18 (dd, 1H, *trans* H-4', J = 5 and 18 Hz), 3.74 (dd, 1H, *cis* H-4', J = 12 and 18 Hz), 4.58 (d, 1H, OCH-

*H*, J = 17 Hz), 5.06 (d, 1H, OCH-*H*, J = 17 Hz), 5.98 (dd, 1H, H-5', J = 5 and 12 Hz); Anal. Calcd. for  $C_{26}H_{22}N_4O_3$ : C, 71.22; H, 5.06; N, 12.78%. Found: C, 71.04; H, 4.92; N, 12.96.

### **Bioassay**

The compounds were screened for their in vitro growth-inhibitory activity against four phytopathogenic fungi namely Alternaria helianthus, Colletotrichum falcatum, Fusarium oxysporum and Rhizoctonia solani. The cultures were maintained on Czapek's Dox agar slants<sup>21</sup> at 5°C. A standard fungicide, carbendazim (2-methoxycarbamoylbenzimidazole) was also tested under similar conditions for comparison. Stock solutions of the compounds and standard fungicide at a concentration of 1 mg mL<sup>-1</sup> were prepared in dimethylsulfoxide. The activity of the compounds against the fungi was carried out using two-fold serial-dilution technique.<sup>6</sup>

#### **Results and Discussion**

The starting synthons, 2-hydroxychalkone (**3a**) and 2-hydroxy-4-methylchalkone (**3b**) were prepared by condensation of salicylaldehyde (**2**) with acetophenone (**1a**) and 4-methylacetophenone (**1b**), respectively, in 5.6% methanolic potassium hydroxide at room temperature in good yield (Scheme 1). The compounds **3a,b** were assigned E-configuration because the two olefinic protons  $H_{\alpha}$  and  $H_{\beta}$  appeared as two AB doublets in <sup>1</sup>H NMR spectra with a coupling constant of 16 Hz each.

The cyclization of **3a**,**b** with hydrazine hydrate in refluxing methanol gave the corresponding 3-aryl-4,5dihydro-5-(2-hydroxyphenyl)-1H-pyrazole (4a,b).The first step in this reaction would be nucleophilic attack of hydrazine at carbonyl carbon of chalkone followed by elimination of water leading to the formation of  $\alpha,\beta$ -unsaturated hydrazone which then undergoes intramolecular cyclization at the double bond.<sup>17</sup> However, the possibility of alternative mechanism could not be ruled out<sup>18</sup>. In the <sup>1</sup>H NMR spectra of 4a,b, the two geminal protons at C-4, adjacent to a chiral centre at C-5 showed magnetic non-equivalence and, therefore, appeared at different chemical shifts. These were assigned on the basis of their chemical shifts<sup>19</sup> rather than on the basis of their coupling constants with the proton at C-5, because coupling constants in such compounds are known to be influenced by the nature of N-1 substituents.<sup>20</sup> Accordingly, the one resonating at higher field was assigned *trans* C-4 H and the one resonating at lower field was assigned *cis* C-4 H with respect to C-5 H.

The dihydropyrazoles **4a,b** were acylated to the corresponding 1-acyl derivatives **5a-d** by refluxing the former in acetic or propionic acids. The 1-acyl-4,5-dihydropyrazoles **5a-d** were also prepared directly from **3a,b** in a single step by refluxing these with hydrazine hydrate in acetic or propionic acids. The C-4 and C-5 protons also displayed characteristic chemical shifts and coupling constants in their <sup>1</sup>H NMR spectra.<sup>19</sup>.

Alkylation of **5a-d** with ethyl chloroacetate in presence of potassium carbonate in dimethylformamide at room temperature gave the corresponding ethyl 2-(1-acyl-3-aryl-4,5-dihydro-1*H*-pyrazol-5-yl)phenoxy]acetates (**6a-d**) in good yield. Besides the characteristic signals for protons at C-4 and C-5, a triplet and a quartet for CH<sub>3</sub> and CH<sub>2</sub> with a coupling constant of 7 Hz each and a singlet for OCH<sub>2</sub> were also observed in their <sup>1</sup>H NMR spectra.

Aminolysis of the esters **6a-d** with isopropylamine, piperidine and morpholine yielded the corresponding 2-[2-(1-acyl-3-aryl-4,5-dihydro-1*H*-pyrazol-5-yl)phenoxy]-N-isopropylacetamides (**7a-d**), 1-[{2-(1-acyl-3aryl-4,5-dihydro-1*H*-pyrazol-5-yl)phenoxy}-acetyl]piperidines (**7e-h**), and 4-[{2-(1-acyl-3-aryl-4,5dihydro-1*H*-pyrazol-5-yl)phenoxyacetyl]morpholines (**7i-t**), respectively. The two methyl groups of isopropyl moiety in N-isopropylacetamide derivatives **7a-d** showed unusual magnetic nonequivalence and appeared as two doublets by coupling with methine proton each with a coupling constant of 7 Hz.

Hydrazinolysis of esters **VIa-d** with hydrazine hydrate in refluxing methanol furnished the corresponding 2-[2-(1-acyl-3-aryl-4,5-dihydro-1*H*-pyrazol-5-yl)phenoxy]acetic acid hydrazides (**8a-d**) in good yields. In these compounds, the OCH<sub>2</sub> protons were found magnetically nonequivalent and appeared as AB doublets in their <sup>1</sup>H NMR spectra with geminal coupling constants of 16 Hz each besides other expected signals.

Refluxing of hydrazides (**8a-d**) with five different substituted benzoic acids in phosphoryl chloride yielded the corresponding title compounds, 2-[{2-(1-Acyl-3-aryl-4,5-dihydro-1*H*-pyrazol-5-yl)phenoxy}-methyl]-5-aryl-1,3,4-oxadiazoles (**IXa-t**). The compounds displayed expected spectral and analytical data.

The antifungal screening data presented in Table 1 indicates that many of the compounds **3-9** were active against the fungi tested at varying concentrations.

The most active compound against *A. helianthus* were found to be **5d**, and **9q** which prevented its growth at a concentration of 25 mg litre<sup>-1</sup>. The compounds **3a**, **4a,b**, **6b**, **7b,e,j** and **9m** were found effective at a concentration of 50 mg litre<sup>-1</sup>. The remaining other compounds were toxic at 100 mg litre<sup>-1</sup> except **5c**, **6a**, **7c,i,l**, **8b,c**, **9b,f,,h,k,l** and **9s** which were ineffective upto this concentration.

*C. falcatum* was found most sensitive to **9a** which inhibited its growth at 6.25 mg litre<sup>-1</sup> concentration. The compounds **7g** and **9n** were active at 12.5 mg L<sup>-1</sup> while compounds **3a**, **5d**, **7b,d**, and **9i** were active at 50 mg L<sup>-1</sup> concentrations. The compounds **5c**, **6a**, **7c,f,i,j** and **9q** were inactive and remaining compounds were active against *C. falcatum* at 100 mg L<sup>-1</sup> concentration.

The compound **3a**, **7g** and **8a** were active against *F. oxysporum* at concentrations as low as 3.13, 6.25 and 12.5 mg L<sup>-1</sup>, respectively. The compounds **4b**, **6b,c, 9i,k,** and **9n** at 25 mg L<sup>-1</sup> and compounds **3b**, **4a, 5b, 6a, 7k, 9f,o,q** and **9s** at 50 mg L<sup>-1</sup> concentrations also registered their activity against this fungus. Majority of the remaining compounds were active at 100 mg L<sup>-1</sup> concentration except **5c**, **7a,c,e,f,i, 9c,h**, and **9m** which were unable to prevent its growth upto 100 mg L<sup>-1</sup> concentration.

The most toxic compound against *R. solani was* found to be  $9\ell$  (MIC 6.25 mg L<sup>-1</sup>) followed by 8c, 9f, h and 9t (MIC 12.5 mg L<sup>-1</sup>). The compounds 8d, 9p and 9r were found active against this fungus at 25 mg litre<sup>-1</sup> while **3b**, **4b**, **5b**, **c**, 7d, j,  $\ell$  and 9o at 50 mg L<sup>-1</sup> concentrations. Except the compounds 6a, 7b, c, g, i, k, 8a and 9c which were inactive upto a concentration of 100 mg L<sup>-1</sup>, all remaining compounds were active at this concentration.

Though none of the compounds could surpass the activity of carbendazim, however, the promising activity shown by some of the compounds may offer a suitable lead for synthesis of more active compounds by further structural modifications. The mixed pattern of activity results also did not allow us to draw structure activity correlations.

#### Conclusion

2-[{2-(1-Acyl-3-aryl-4,5-dihydro-1*H*-pyrazol-5yl)phenoxy}methyl]-5-aryl-1,3,4-oxadiazoles and related compounds were synthesized, characterized and evaluated for their *in vitro* growth-inhibitory activity against four fungal pests, *A. helianthus*, *C. falcatum*, *F. oxysporum* and *R. solani*. Many of the compounds have displayed promising activity at different concentrations ranging from  $3.13 - 100 \text{ mg L}^{-1}$ .

## Acknowledgement

Instrumental facilities provided by Regional Sophisticated Instrumentation Centre (now renamed Sophisticated Analytical Instrumentation Facility), Punjab University, Chandigarh are gratefully acknowledged.

### References

- 1 Descacq P, Nuhrich A, Varache M, Capdepuy M & Devaux G, *Eur J Med Chem*, 25 (1990) 285.
- 2 Shivaram H B, Venkatramana U K & Sridhar K R, *Bull Chem Soc Japan*, 62 (1989) 3409.
- 3 Rowberg K A, Even M, Martin E & Hopfinger A J, *J Agric* Food Chem, 42 (1994) 374.
- 4 Sangwan N K, Verma B S & Dhindsa K S, J Praktische Chemie, 330 (1988) 137.
- 5 Singh N, Sangwan N K & Dhindsa K S, Synt React Inorg Metal-Org Chem, 29 (1999) 673.
- 6 Singh N, Sangwan N K & Dhindsa K S, Pest Manag Sci, 56 (2000) 284.
- 7 Hes R V, Wellinga K & Grosscurt A C, *J Agric Food Chem*, 26 (1978) 915.

- 8 Vaidya A, Pathak D & Shah K, *Chem. Biol. Drug Des*, 97 (2021) 572.
- 9 El-Samii Z K A, J Chem Tech Biotech, 53 (1992) 143.
- 10 Dubey A K, Kumar S & Sangwan N K, *Indian J Chem*, 33B (1994) 1043.
- 11 Hill J, In Comprehensive heterocyclic chemistryvol 6, (Ed Katriziski A R & Rees C W, Pregamon press) 1984, p. 427.
- 12 Vansdadia R N, Roda K P & Parekh H, J Indian Chem Soc, 65 (1988) 809.
- 13 Srivastava S K, Pathak R B &Bahel S C, J Indian Chem Soc, 68 (1991) 113.
- 14 Salama E E, BMC Chemistry, 14 (2020) 30.
- 15 Vaidya A, Jain S, Jain P, Jain P, Tiwari N, Jain R, Jain R, Jain A K & Agrawal R K, *Mini Rev Med Chem*, 16 (2016) 825.
- 16 Stecoza C E, Nitulescu G M, Draghici C, Caproiu M T, Olaru O T, Bostan M & Mihaila M, *Pharmaceuticals*, 14 (2021) 438.
- 17 El-Rayyes N R & Al-Awadi N A, Synthesis, (1985) 1028. https://doi.org/10.1055/s-1985-31422.
- 18 Levai A, Szollosy A & Toth G, J Chem Res (S), (1985) 392.
- 19 Sangwan N K, J Chem Res (S), (1987) 22.
- 20 Elguero J & Fruchier A, J Chem Res (S), 21 (1990) 200.
- 21 Tuite J, *Plant pathological methods: Fungi and bacteria*, (Burgess publishing company, Minneapolis) 1969, p. 239.