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The presence of toxic heavy metals in the wastewater coming from industries is of great concern across the world. In 
the present work, a novel soft computing technique support vector regression (SVR)technique has been used to predict 
the removal of cadmium ions from wastewater with agricultural waste ‘rice polish’ as a low-cost adsorbent, with contact 
time, initial adsorbate concentration, pH of the medium, and temperature as the independent parameters. The developed 
SVR-based model has been compared with the widely used multiple regression (MR) model based on the statistical 
parameters such as coefficient of determination (R2), average relative error (AARE) etc. The prediction performance of 
SVR-based model has been found to be more accurate and generalized in comparison to MR model with low AARE 
values of 0.67% and high R2 values of 0.9997 while MR model gives an AARE value of 29.27% and 0.2161 as 
coefficient of determination (R2). Furthermore, it has also been observed that the SVR model effectively predicts the 
behavior of the complex interaction process of cadmium ions removal from waste water under various experimental 
conditions.  

Keywords: Heavy metals, Low cost adsorbent, Support vector regression (SVR), Coefficient of determination (R2), 
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Cadmium being the toxic heavy metal is of great 
concern across the world as its long-term exposer in 
the environment can cause kidney damage, high blood 
pressure, renal disorder, bone degradation, anemia 
and destruction of red blood cells. The major source 
of cadmium discharge in the environment include 
mining industries, metal plating, pigments, phosphate 
fertilizer, cadmium nickel batteries, stabilizers and 
alloys1,2. Various conventional technologies have 
been used in the past for the removal of heavy metals 
like membrane process, filtration, ion exchange, 
precipitation, solvent extraction etc3-5. Adsorption 
process has offered an ideal alternative to these 
technologies, being economical and efficient treatment 
method for wastewater treatment6,7. However, its 
performance is mostly affected by the type of 
adsorbent used. A lot of research is going on natural 
materials to be used as adsorbent such as saw dust, 
rice husk, fly ash, tea waste etc., since these are 
environmental friendly, low cost, biodegradable and 
having high metal recovery8,9. 

There are many factors that influence the heavy 
metal removal in an adsorption process such as initial 
concentration of adsorbate, operating temperature, 

pressure, initial pH, contact time, and other coexisting 
substances and adsorbent structure10. Several 
techniques like multiple regression (MR), artificial 
neural network (ANN), genetic algorithm (GA) etc. 
are being used to predict the heavy metal removal 
efficiency11-13. Recently, support vector machine 
(SVM), an artificial intelligence (AI) technique have 
been developed as a support vector classification 
(SVC) and support vector regression (SVR). The 
support vector machines (SVMs)based on the superior 
structural risk minimization (SRM) principle offer a 
lot of advantages over the traditional techniques ANN 
and MR such as unique, global and optimal 
solution14,15. The most commonly used multiple 
regression (MR) technique suffers from multiple local 
solutions, over-fit to data and often leads to poor 
generalizability. This means good performance for 
training dataset and poor performance for unseen test 
dataset. Thus, in the present work, the issue has been 
address to explore the use of SVR to predict and 
analyze the adsorption capacity of Cd (II) ions.  
The applicability of SVR-based models in the  
field of chemical engineering has been well 
demonstrated16-21.  
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In the present study, SVR-based model has been 
developed to predict the adsorption capacity of Cd(II). 
The experimental data from literature was first 
preprocessed. Using this data, the objectives were 
twin-fold: to develop a unified MR model from the 
statistically sound experimental data followed by the 
formulation of a unified SVR-based model from the 
same data. Furthermore, the performance of SVR 
model has also been comprehensively studied for 
predicting the behavior of the complex interaction 
process of cadmium ions removal from waste water 
under various experimental conditions. 
 
Experimental Section 
 
Abridged theory of SVR-based modeling 

A detailed description of the theory of SVM can be 
referred to in several excellent works22-26. In a typical 
regression problem, a training dataset is given as: 
 ሼሺ𝑥ଵ, 𝑦ଵሻ… … ሺ𝑥 ,𝑦ሻሽ𝑋 ... (1) 
 
where, X denotes the space of the input patterns.  

The objective of a ε-SVR model is to fit a 
regression function, such that it accurately predicts 
the outputs yi corresponding to a new set of input 
samples, xi. The SVR algorithm attempts to place a 
tube around the data as shown in Fig. 1. 

In SVR, the objective is to minimize empirical 
error as well as the model should be as flat as possible 
(means a small value for weight vector w). The 
regression function in the feature space is 
approximated as: 
 𝑓(𝑥) = (𝑤●(𝑥) + 𝑏) ... (2) 
 
where, the function of x termed feature and 𝑤●(𝑥) is 
the dot product in the high dimensional feature space, 
F. Here, SVR first maps the input data into this 

feature space using a nonlinear mapping, and 
subsequently regression is carried out linearly.  

The coefficients are estimated by minimizing the 
regularized risk function given as: 
 𝑅 = 𝐶 ଵே∑ 𝐿ఢேୀଵ ൫𝑦 , 𝑓(𝑥)൯ + ଵଶ ||𝑤ଶ|| … (3) 
 

where, the first part of this equation is the empirical 
risk or error and is measured by a loss function called 
ε-insensitive loss function proposed by Vapnik27 as: 
 𝐿ఢ൫𝑦, 𝑓(𝑥)൯ = ൜  0 𝑖𝑓|𝑦 − 𝑓(𝑥) ≤ 𝜀|𝑦 − 𝑓(𝑥)| − 𝜀𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ... (4) 

The second part of Eq. (3) is used as a measure of 
function flatness (or less complexity of function 
fitness). C is a regularized constant determining the 
trade-off between the training error and model 
flatness. After introducing slack variables, the SVR 
formulation can be expressed mathematically in the 
form of a convex optimization problem as: 
 

Minimize ଵଶ ห|𝑤ଶ|ห + 𝐶 ∑ 𝜉ேୀଵ + 𝜉∗ ... (5) 
 

Subject to (𝑦 − 𝑤●∅(𝑥) − 𝑏) ≤ 𝜀 + 𝜉  
 (𝑤●∅(𝑥) + 𝑏−𝑦) ≤ 𝜀 + 𝜉∗  
 𝜉 , 𝜉∗ ≥ 0 
 

The above-mentioned convex optimization 
problem (Eq. (5)) can be solved by transforming it 
into its dual form by introducing Lagrange multipliers 
and exploiting optimality constraints. The final 
decision function takes the following form: 
 

f(𝑥,𝛼 ,𝛼∗) = ∑ (𝛼 − 𝛼∗)ேೞೡୀଵ ቀ∅(𝑥)●∅൫𝑥൯ቁ + 𝑏... (6) 
 

where, α and α* are the introduced Lagrange 
multipliers. Only the non-zero coefficients, and the 
corresponding input vectors, xi, are called support 
vectors (SVs).  

The problem of contradiction between high 
dimensions and computational complexity can be 
overcome by defining appropriate kernel functions in 
place of the dot product of the input vectors in high-
dimensional feature space28 as: 
 𝐾൫𝑥 , 𝑥൯ = ቀ∅(𝑥)●∅൫𝑥൯ቁ  … (7) 
 

Any function that satisfies Mercer’s condition 
(kernel function must be symmetric, and it must be 
positive semi-definite) can be used as the kernel 
function29. The most commonly used kernel function 

 
 

Fig. 1 — The illustration of SVM for regression problem using ε-
insensitive loss function 
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is the Gaussian radial basis function (RBF) defined 
below:  
 𝐾൫𝑥 , 𝑥൯ = ቀ∅(𝑥)●∅൫𝑥൯ቁ                   = 𝑒𝑥𝑝 ൬− 12𝜎ଶ |ห𝑥 − 𝑥ห|ଶ൰ 𝑒𝑥𝑝൫−𝛾|ห𝑥 − 𝑥ห|ଶ൯ 
 … (8) 
 

Thus, when using a kernel function all the 
necessary computations related to can be performed 
implicitly in the input space rather than in the high 
dimensional feature space. The basic SVR decision 
function modeling the data takes the following form: 
f(𝑥,𝛼 ,𝛼∗) = ∑ (𝛼 − 𝛼∗)ேೞೡୀଵ ቀ𝐾൫𝑥 , 𝑥൯ቁ + 𝑏 … (9) 
 

The bias parameter, b, can be determined by 
applying Karush–Kuhn–Tucker (KKT) conditions 
which state that at the optimal solution the product 
between dual variables and constraints has to vanish.  
 
SVR modeling procedure 

The following steps have been carried out for the 
development of SVR-based model30, 31: 

i. First, the whole dataset is organized into 
dependent and independent variables. Then it is 
normalized between 0 to 1 using the formula as given 
below: 𝑋௭ = 𝑥 − 𝑥𝑥௫ − 𝑥 

ii. After that using simple random sampling 
(SRS) technique, the whole dataset is then divided 
into training dataset (80% dataset) and test dataset 
(20% dataset) respectively. 
iii. Among various kernels such as linear, 
polynomial, sigmoid, radial basis function (RBF) etc., 
the appropriate kernel function is chosen. 
iv. 10-fold cross validation technique is usedto 
optimize the model parameters: C, 𝜀 and the kernel 
parameter (ϒ for RBF kernel). 
v. Using the optimum values of model 

parameters, training and testing of SVR simulation is 
done. 
vi. The developed SVR model performance is 
then evaluated based on the statistical parameters like 
coefficient of determination (R2), average absolute 
relative error (AARE), standard deviation (SD), root 
mean square error (RMSE) etc. 
 
Evaluation parameters 

The statistical analysis of the developed models 
prediction is based on the following performance 
criteria18, 19: 

1. The average absolute relative error (AARE) 
of the developed models on test dataset should be 
minimum: 𝐴𝐴𝑅𝐸 = 1𝑁 ቤ൫𝑦ௗ, − 𝑦௫,൯𝑦௫, ቤே

ୀଵ ൩ 
2. The cross-correlation co-efficient (R) of the 

models between input and output (target) should be 
around unity: 𝑅 = ∑ ൫𝑦௫, − 𝑦௫തതതതതത൯൫𝑦ௗ, − 𝑦ௗതതതതതതത൯ேୀଵට∑ ൫𝑦௫, − 𝑦௫തതതതതത൯ଶ ∑ ൫𝑦ௗ, − 𝑦ௗതതതതതതത൯ଶேୀଵேୀଵ  

3. The root mean square (RMSE) used for 
assessing the model should be minimum: 𝑅𝑀𝑆𝐸 = ඨ∑ ൫𝑦ௗ, − 𝑦௫,൯ଶேୀଵ 𝑁  

4. The standard deviation (SD) on test data 
(unknown sample) should be minimum: 

𝑆𝐷 = ඨ∑ ቀ൫𝑦ௗ, − 𝑦௫,൯ × 100ቁଶேୀଵ 𝑁 − 1  

5. The mean relative error (MRE) of the models 
should be as minimum as possible: 𝑀𝑅𝐸 = 1𝑁ቤቈ𝑦௫, − 𝑦ௗ,𝑦ௗ, ቤே

ୀଵ  

6. Leave-one-out cross validationon the training 
dataset (𝑄ைைଶ )was used to evaluate the internal 
predictive capability of the models: 𝑄ைைଶ = 1 − ∑ ൫𝑦௫, − 𝑦ௗ,൯ଶೝೌୀଵ∑ ൫𝑦௫, − 𝑦௫,൯ଶೝೌୀଵ  

7. Leave-one-out cross validation on the test 
dataset (𝑄௫௧ଶ )was used to evaluate the external 
predictive capability of the models: 𝑄௫௧ଶ = 1 − ∑ ൫𝑦௫, − 𝑦ௗ,൯ଶೞୀଵ∑ ൫𝑦௫, − 𝑦௫,൯ଶೞୀଵ  

 
Results and Discussion 

In this study, two models SVR and MR model have 
been developed using the data available from the 
published literature32 to predict the removal of 
cadmium ions from wastewater with agricultural 
waste ‘rice polish’ as a low cost adsorbent, based on 
the contact time (min), initial adsorbate concentration 
(mg/L), pH of the medium, and temperature (°C). 
LIBSVM package33 on MATLAB platform has been 
used to develop the SVR-based models and a 
comparison of the developed SVR-based model has 
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been made with the widely used classical technique, 
multiple regression. 
 

Multiple regression (MR)-based model 
The whole dataset of 95 samples is being divided 

into training and test dataset using the simple random 
sampling (SRS) technique, as 80% (76 sample) and 
20% (19 sample), respectively. Thereafter, training 
dataset is used to develop a MR model for the 
predicting the adsorption capacity of Cd(II), q that 
depends on temperature (x1), pH (x2), initial adsorbate 
concentration (x3), and the contact time (x4).  

The following MR model equation has been 
obtained: 
 𝑞 = 0.0155 × 𝑥ଵି .ଵହ × 𝑥ଶଵ.ଵଶଵ × 𝑥ଷ.ଽ଼଼ × 𝑥ସ.ଵଷଽ  
 ... (10) 
 

Prediction capability of the MR model has been 
compared with the experimental values as shown in 
the Fig. 2. This shows that the most of the predicted 
data points for both training as well as test dataset are 
away from the ideal fit line. Furthermore, the 
performance of MR model has also been evaluated 
based on statistical parameters given in Table 1. 

Average absolute relative error (AARE) values for the 
training data set is only 5.3% whereas a high AARE 
value of 29.27% for the test dataset is obtained. 
Similarly, other statistical parameters have also much 
greater discrepancy between training and the test 
dataset. Since, MR and other classical regression 
techniques are based on empirical risk minimization 
(ERM) principle which minimizes only empirical 
error or training error and do not consider the capacity 
of the machine. This result in overtraining i.e. high 
accuracy for the training dataset and low for the test 
dataset. It can be deduced from this table that the 
performance of MR model is poor, particularly for the 
test dataset (unknown sample). 
 
Analysis of the SVR-based model 

In the present study, the RBF kernel has been used 
because of its good generalization performance and 
only few parameters are required to be adjusted18. The 
optimal values of the SVR model parameters (C, ε 
and γ) has been obtained using grid search 
methodology with 10-fold cross validation with a 
wide range of these parameters: C [25, 215], γ [2-15, 22] 
and ε [2-15, 24]. Table 2 gives the obtained optimal 
values of the SVR model parameters. 

After optimization of the SVR parameters, the 
training and test course have been plotted in Fig. 3 
and 4 respectively. It is observed that the predicted 
values of the adsorption capacity, q for Cd(II) are 
very close to the experimental values of the 

 
 

Fig. 2 — Performance of MR model using training data and test 
data for prediction of cadmium removal 
 

Table 1 — Model evaluation parameters for MR-based model 
using training and test data set 

MR Model evaluation parameter Train data Test data 
AARE (%) 5.3013 29.2753 
R2 0.8258 0.2161 
RMSE 0.0622 0.1973 
SD 0.7377 1.4512 
MRE 0.0520 0.0929 
Q2LOO (Train data),Q2ext(Test data) 0.8213 0.0753 

Table 2 — Optimal parameters of SVR-based model for the adsorption capacity of Cd(II) 
Model C γ = 1/2σ2 ε Kernel type Type of Loss 

function 
Number of support 

vectors 
Number of 

training points 
Adsorption capacity (q) 32768 0.5 0.028 RBF ε - 

insensitive 
42 76 

 
 

Fig. 3 — Training course curve for predicting the adsorption
capacity in cadmium removal 
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adsorption capacity, q both for training and test 
dataset. Table 3 gives the model evaluation 
parameters of the SVR-based model for both the 
training dataset as well as the test dataset and the 
obtained values of statistical parameters shows a close 
proximity between the training and the test dataset. It 
is found in Fig. 5 that both the predicted values for the 
training data as well as the test data lie close to the 
ideal fit line.Thus, it can be said that SVR-based 
mode gives the excellent prediction performance.  
 
Comparison of SVR-based model with the MR model 

The prediction performance of the developed SVR-
based model has been compared with MR model 
using the test dataset. Table 4 shows that average 
absolute relative error values (AARE) for the SVR-
based model is only 0.68% while for MR model a 
very high value of AARE of 29.28% is obtained. 
Similarly, other statistical parameters values for the 
case of SVR model are much improved and 
acceptable. Figure 6 has been plotted between 
experimental values of adsorption capacity of Cd(II) 
versus predicted values of adsorption capacity of 
Cd(II) using the test dataset. Fig. 6 clearly shows that 
the predicted values lies on the ideal fit line whereas 
most the data points in case of MR model lies away 

from the ideal fit line. From Table 4 and Fig. 6 it can 
be deduce that SVR-based model has the superior 
prediction performance with high accuracy and high 
generalizability. The reason may be attributed to the 
fact that the conventional regression technique, 
multiple regression (MR) is based on the empirical 
risk minimization principle (ERM) which minimizes 
only the empirical error or training error and does not 
count the capacity of the machines whereas SVR is 

 
 

Fig. 4 — Test course curve for predicting the adsorption capacity 
in cadmium removal 
 

Table 3 — Model evaluation parameters for SVR-based model 
using the training and test data 

SVR Model evaluation parameter Train data Test data 
AARE (%) 0.3366 0.6784 
R2 0.9993 0.9997 
RMSE 0.0038 0.0116 
SD 0.7353 1.4634 
MRE 0.0034 0.0070 
Q2LOO (Train data),Q2ext(Test data) 0.9993 0.9995 

 

 
 

Fig. 5 — SVR simulation for adsorption capacity (q) in cadmium 
removal process with optimal parameters using training data and 
test data. 
 

 
 

Fig. 6 — Comparison of SVR model with MR model for 
predicting the adsorption capacity (q) in cadmium removal 
process using test data 
 

Table 4 — Comparison of SVR model with MR model using test 
dataset 

Model evaluation parameter SVR-based model MR model 
AARE (%) 0.6784 29.2753 
R2 0.9997 0.2161 
RMSE 0.0116 0.1973 
SD 1.4634 1.4512 
MRE 0.0070 0.0929 
 



48 INDIAN J. CHEM. TECHNOL., JANUARY 2020 
 
 
based on structural risk minimization principle (SRM). 
By SRM principle, the generalization accuracy is 
optimized over the empirical error and the flatness of 
the regression function or the capacity of SVM. 

Table 5 illustrates the distribution of predicted data 
points of Cd(II) adsorption capacity by MR and SVR-
based model in terms of absolute deviation (AD) for 
training dataset. It is observed that the MR-based 
model predicts nearly 2.6% data points within an 
absolute deviation of less than 0.5 % and a total of 
3.9% data points within an absolute deviation of less 
than 1.0%. And 96.05% data points have an AD of 
more than 1.0%. Furthermore, this table also shows 
that the SVR-based model predicts nearly 90.79 % 
data points within an absolute deviation of less than 
0.5 % and a total of 98.68 % data points within an 
absolute deviation of less than 1.0%. Only 1.3 % data 
points have an AD of more than 1.0%. 

Table 6 shows the distribution of predicted data 
points of Cd(II) adsorption capacity by MR and SVR-
based model in terms of absolute deviation for test 
dataset. It can be seen that no data points fall within an 
absolute deviation of less than 0.5 % and 5.26 % data 
points are within an absolute deviation of less than 
1.0%. And most of the data points 94.74 % have an AD 
of more than 1.0%. While in this table, it is observed 
that the SVR based model predicts nearly 57.89% data 
points within an absolute deviation of less than 0.5% 
and all the data points fall within an absolute deviation 
of not more than 1.0%. It can be concluded from  
Table 5 and 6 that the MR model has high deviation 
between experimental and predicted data points of the 
adsorption capacity as compared to SVR-based model. 
Thus, SVR-based model is found to be highly accurate. 

Performance of the SVR-based model in the light of existing 
theory and experimental findings 

The effect of the various independent variables 
such as contact time (min), initial adsorbate 
concentration (mg/L), pH of the medium, and 
temperature (C) on adsorption capacity of Cd(II) 
predicted by the SVR-based model isbeing discussed 
in the following section. 
 

Effect of contact time and concentration on the adsorption 
capacity of Cd(II)  

Experiments were performed by Singh et al.32 with 
different initial adsorbate concentrations, viz., 100, 
125 and 150 mg/L at constant temperature of 30°C 
and pH 8.6. The percentage removal of Cd(II) was 
found to be 96.95, 92.15 and 85.80, respectively. 
Figure 7 shows that the rate of adsorption increases 
till the equilibrium is achieved. It can also be 

Table 5 — Percentage distribution of predicted data points of the adsorption capacity of Cd(II) by MR model and SVR- based model 
in terms of absolute deviation (AD) for training data. 

Absolute deviation  
(AD) (%) 

% of SVR model  
predicted values 

Cumulative  
score 

% of MR model predicted 
values 

Cumulative score 

AD< 0.5 90.79 90.79 2.63 2.63 
0.5<AD< 1.0 7.89 98.68 1.32 3.95 
AD>1.0 1.32 100 96.05 100 
Total 100  100  

 

Table 6 — Percentage distribution of predicted data points of the adsorption capacity of Cd(II) by MR model and SVR- based model 
in terms of absolute deviation (AD) for test data 

Absolute 
deviation (AD) (%) 

% of SVR model predicted 
values 

Cumulative score % of MR model predicted 
values 

Cumulative 
score 

AD< 0.5 57.89 57.89 0 0 
0.5<AD< 1.0 31.58 89.47 5.26 5.26 
AD>1.0 10.53 100 94.74 100 
Total 100  100  

 
 

Fig. 7 — Effect of contact time and initial adsorbate concentration
on adsorption capacity of Cd(II)-comparison between SVR 
predicted and experimental values of adsorption capacity of Cd(II)
(temperature = 30 oC, pH = 8.6, agitating speed = 125 rpm) 
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concluded that Cd(II) removal was highly dependent 
on the adsorbate concentration. Furthermore, it is also 
observed that SVR-based model successfully predicts 
the effect of contact time and concentration on the 
adsorption capacity of Cd(II). This is due to the fact 
that SVR-based model seeks to have low empirical or 
training error and the complexity of the model. 
 

Effect of temperature on the adsorption capacity of Cd(II) 
Experiments were also performed at different 

temperatures 20, 30 and 40°C keeping the adsorbate 
concentration of 125 mg/L and a pH of 8.6 to a 
constant value. Figure 8 shows that with the rise in 
temperature from 20 to 40°C, the percentage of 
adsorption decreases. The decrease in adsorption 
happens with the rise in temperature because of the 
weakening of adsorptive forces between the active 
sites of the adsorbents and adsorbate and also between 
the adjacent molecules of the adsorbed phase. Here 
also, predicted curve shows a close agreement with 
the experimental data points. Thus, it can be deduced 
that the SVR model based on superior SRM principle 
correctly predicts the effect of temperature on the 
adsorption capacity of Cd(II). 
 

Effect of pH on the adsorption capacity of Cd(II)  
Experiments were performed at different pH (4.0, 

6.4, 7.0, 8.6 and 10.0) to a constant condition of 
temperature 30°C and concentration 125 mg/L. The 
percentage removal Cd(II) increased from 40.90 to 
92.15 as pH increases from 4.0 to 8.6 and thereafter 
percentage of Cd(II) removal decreased from 92.15 to 
19.75 when pH increases from 8.6 to 10. The 
optimum value of pH for the removal of Cd(II) on 

rice polish was obtained 8.6. Figure 9 shows that the 
adsorption of cadmium was higher in alkaline pH. 
However, the removal was less in acidic range and 
reached a maximum around pH 8.6 and above pH 8.6 
removal of cadmium started to decrease due to soluble 
hydroxyl complexes of cadmium hydroxides32,34.  
Figure 9 also shows the predicted values of the 
amount of Cd(II) adsorbed by SVR-based model. 
Since, SVR model is based on SRM principle which 
minimizes the empirical error as well as the 
complexity of the model. Therefore, the predicted 
values of the adsorption capacity of Cd(II) are close to 
experimental values and follows the same trend. 
 
Conclusions 

Support vector regression (SVR) has been 
successfully used for predicting the adsorption 
capacity of Cd(II). The developed SVR-based model 
is then compared with the MR model and the obtained 
results reveal that the SVR model fitted the data better 
than the commonly used MR model. The effects of 
various operational parameters (pH, initial adsorbate 
concentration, contact time and temperature) on the 
adsorption capacity of Cd(II) have been studied and it 
is observed that the SVR model effectively predicts 
the behaviour of the complex interaction process 
under various experimental conditions. SVR model 
based on structural risk minimization (SRM) principle 
minimizing the empirical error as well as the 
complexity of the model is found to be highly 
accurate and generalized. Good SVR prediction 
results can be helpful in more efficient design of the 
adsorption process for the removal of heavy metals. 

 
 

Fig. 8 — Effect of temperature on adsorption capacity of Cd(II) -
comparison between SVR predicted and experimental values of
adsorption capacity of Cd(II) as a function of time at different
temperature (initial adsorbate conc. = 125mgL−1, pH = 8.6, agitating
speed = 125 rpm) 
 

 

 
 

Fig. 9 — Effect of pH on adsorption capacity of Cd(II) -
comparison between SVR predicted and experimental values of
adsorption capacity of Cd(II) at different pH (initial adsorbate conc. 
= 125mgL−1, temperature = 30oC, agitating speed = 125 rpm) 
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NOMENCLATURE 
C cost function 
f(x)  regression function 
K(xi,xj)  kernel function 
L  Lagrangian function (dual form) 𝑄௫௧ଶ  Leave-one-out cross validation on the test set 𝑄ைைଶ  Leave-one-out cross validation on the  

training set 
xi Input vector 
yi Output vector 
 
Greek symbols 
σ Width parameter of RBF kernel 
ε  loss function 
γ  regularization parameter 
 

α and α* Lagrange multipliers 
φ(xi) mapping function to high dimensional feature 
space for input vector x 
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