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Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyzes the first common step in branched-chain amino acid 
biosynthesis. The enzyme is inhibited by several chemical classes of compounds and this inhibition is the basis of action of 
the sulfonylurea herbicides. The negative logarithm inhibition constant (pKi) of 68 sulfonylurea analogs as inhibitors of pure 
AHAS using quantitative structure–activity relationship (QSAR) has been calculated. Suitable set of molecular descriptors 
are calculated and the important descriptors are selected by genetic algorithm and stepwise multiple regression methods. 
These variables serve as inputs to generated neural networks. After optimization and training of the networks, they are used 
for the calculation of pKi for the prediction set. Comparison between the results obtained, show the superiority of genetic 
algorithm over stepwise multiple regression method in feature-selection. For network that used the genetic algorithm for 
feature-selection methods there are very good agreements between calculated and experimental pKi for data set. The 
correlation coefficient between calculated and experimental values of pKi for training and prediction set are 0.988 and 
0.954, respectively.   
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Since their discovery in the 1970s, sulfonylureas have 
emerged as a group of herbicides with many 
innovative natures. Their level of activity is 
unprecedented and may be up to 100 times that of 
conventional herbicides. Compared with other 
herbicides, sulfonylureas have much lower use range 
and are more rapidly degraded in soil1,2. They have 
the attributes of low application rates, environmental 
safety, good crop selectivity and low mammalian 
toxicity. Following an extensive synthetic program 
led by Levitt and colleagues3 the first sulfonylurea 
herbicide chlorsulfuron was developed. Since that 
time, a large number of other sulfonylurea herbicides 
have been identified and are now applied widely4. The 
general features of most active compounds are an 
ortho-substituted aromatic ring attached to the  

sulfur atom, and a heterocyclic ring substituted in 
both meta positions and attached to the distal nitrogen 
atom of the sulfonylurea bridge. This heterocyclic 
ring is either a pyrimidine (X = CH) or triazine  
(X = N). The mode of action of sulfonylureas started 
to become clear when it was discovered that 
sulfometuron methyl is a potent inhibitor of bacterial 
acetohydroxyacid synthase5 (AHAS; EC 2.2.1.6),  
the enzyme that catalyzes the first common step  
in branched-chain amino acid biosynthesis. 
Contemporary, Ray showed that chlorsulfuron 
inhibits plant AHAS6. Since then, other sulfonylurea 
herbicides have been shown to inhibit AHAS, and it is 
widely accepted that inhibition of this enzyme is the 
mode of action of sulfonylureas as well as several 
other families of herbicides7. An important property 
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of the use of such inhibitors is that there is no AHAS 
counterpart in humans and other animals. 

Despite of the large number of papers on AHAS 
published in recent years on the interaction between 
herbicides and this enzyme there are some aspects of 
the inhibition that remain puzzling8. Thus, it is 
important to determine which structural features of 
the herbicides are responsible for the enzyme 
inhibition. This is essential for the design of new 
herbicides since its properties may be predicted prior 
to synthesis and consequently the design may, in this 
way, be guided by the results of calculations. 
Quantitative structure activity relationship (QSAR) 
modeling has shown to be very effective for this 
purpose. This approach provides information that is 
useful for molecular design and medicinal chemistry9. 
The QSAR models are mathematical equations which 
relate chemical structure of compounds to a wide 
variety of their physical, chemical, biological and 
technological properties. If we could elucidate in 
detail how these properties are determined by 
structure we can predict such properties simply from 
the molecular structure. The main task of QSAR is to 
obtain a reliable statistical model for the prediction of 
activities or properties of new chemical substances 
and analytical systems. Nowadays, QSAR models are 
rapidly developing and have been widely used by 
chemists for predicting different chemical and 
physical properties of different types of molecules. In 
the case of herbicides there are lots of QSAR 
studies10,11. Surprisingly, considering the similarity of 
the compounds applied to develop the models, they 
involve different number and types of descriptors, 
complicating the physical interpretation. On the other 
hand, the models are based on empirically derived 
descriptors which limit their application to new or 
developing chemicals. Duggleby et al. performed 
comparative molecular field analysis (CoMFA) and 
comparative molecular similarity indices analysis 
(CoMSiA) analyses of a new family of sulfonylurea 
herbicides10. Roy and Paul performed docking and 3D 
QSAR analysis for 45 sulfonylurea derivatives11. 
They used homogeneous compounds, relatively. 
Whiles, if data set are more diverse for example 
another sulfonylurea derivatives such as pyrazole 
sulfonylureas, pyridine sulfonylureas, thiazole 
sulfonylureas and etc, are applied, final model is more 
general and valid. Also they considered linear 
relationships but the commonly used multiple linear 
regression (MLR) will fail to develop an appropriate 
QSAR model when the nonlinear phenomenon is 

significant to some extent within the data 
investigated; therefore nonlinear modelling 
techniques such as artificial neural networks (ANN) 
were necessary to be introducing for building an 
accurate and reliable QSAR model. ANN has recently 
gained much popularity for calibrating the nonlinear 
relationships12. The major advantage of ANN lies in 
the inherent ability to calibrate the nonlinear 
relationships. Therefore, ANN has become an 
important modelling tool for building QSAR 
models13. 

In the present paper, a QSAR model for the 
prediction of inhibition constant of 68 diverse 
sulfonylurea herbicides consist of mono-substituted, 
bridge modification, pyrazole, pyridine, thiazole and 
di-substituted sulfonylureas, using artificial neural 
network and genetic algorithm has been presented. To 
the best of our knowledge, this is the first QSAR 
study using a hybrid method to the prediction of 
inhibition constant of sulfonylurea herbicides.  
 
Experimental Section 
Data set 

The structures of a diverse set of 68 sulfonylurea 
herbicides as well as their negative logarithm 
inhibition constant (pKi) reported in the literature 10. 
The value of pKi ranged between 2.64 and 8.08 for 
sulfonylurea and Chlorimuron ethyl herbicides, 
respectively. The molecules in data set randomly 
divided into three sets; training, test and prediction set 
which each of them consisting of 46, 12, 10 member, 
respectively. The structures of these herbicides and 
their experimental pKi are shown in Table 1.   
 
Structural descriptors 

To obtain a QSTR model, compounds are 
represented by theoretical molecular descriptors. In 
order to compute the structural descriptors, the 
structures of all herbicides were drawn with 
HyperChem 4.0 program14 and were optimized using 
the semiepirical quantum method AM1 of the 
HyperChem program. After geometry optimization, 
Hyperchem output files were used by the Dragon 
program as input to calculate molecular descriptors15. 
In order to reduce redundant and non-useful 
information, prescreening of descriptors were carried 
out in the following way; (1) constant or near constant 
descriptors were eliminated, and (2) among those 
descriptors whose inter-correlations exceeded 0.9 the 
most suitable and interpretable ones were kept  
while the others were deleted. The remaining  



SAIDI & MIRZAEI: PREDICTION OF AHAS INHIBITION BY SULFONYLUREA HERBICIDES   
 
 

123 

534 descriptors were used to generate the QSAR 
models. These parameters encoded different aspects 
of the molecular structure. Since the number of 
descriptors considered is large, a suitable feature 
selection method should be combined with a proper 
feature mapping technique. In the present work we 
have considered stepwise multiple regression and 
genetic algorithm as feature-selection tools and ANN 
was employed for feature mapping.  
 
Genetic algorithm 

Variable selection is always one of the most 
important steps in developing a QSTR model, which 
is especially important when one is required to deal 
with a large variable set. Genetic algorithm (GA) is a 
stochastic optimization method that has been inspired 
by evolutionary principles16. The different aspect of a 
GA is that it investigates many possible solution 
simultaneously, each of which explores distinctive 
regions in parameter space17. For the moment, one of 
the best available tutorial on variable selection using 
GA published by Leardi and Gonzalez18. In the 
present paper, GA optimization method was tried 
following the studies of Rogers and Hopfinger19 and 
Luke20 with a few minor modifications. In this GA an 
individual of the population is represented by the 
string of bits that encoding the selected feature. The 
first step in a GA is to create a gene pool of  
n individuals. Each individual (chromosome) contain 
some descriptors that in the first generation are 
chosen randomly from a common list and in a way 
such that no two individuals can be fined that contain 
exactly the same set of descriptors. The fitness of 
each individual in this generation is appointed by a 
user specified fitness function. In the next step 
reproduction take place, which individuals are 
selected probabilistically on the basis of their fitness 
scores and serve as parents. The selection strategy that 
applied in this program was random selection method. 
Next step is a crossover that each of parents 
contribute a random selection of half of its descriptors 
and an offspring is constructed by combining these 
two halves of genetic code. Therefore, the generated 
offspring contains characteristics from both of its 
parents. Finally, this offspring is subjected to a 
random mutation in one of its gene, i.e. one descriptor 
is replaced by another. This selection crossover 
mutation process is repeated until all of the n parents 
in the gene pool are replaced by their offspring. The 
fitness score of each member of this new generation is 
again evaluated, and the reproductive cycle is 

continued until a desired number of generations or 
target fitness score is reached. In our GA program that 
was written by MATLAB7 one modification is made. 
This is the inclusion of elitism, which protect the 
fittest individual in any given generation from 
crossover or mutation during reproduction. The 
genetic content of this individual simply moves on to 
the next generation intact. In original studies, the 
fitness function of the individual was determined by a 
function related to the residual error in the regression 
analysis of the training data. Here we try to use 
varieties of fitness functions, which are proportional 
to the residual error of the prediction set and the 
number of selected variables according to the 
following equation: 
 

Fitness = (1 – w) (1/MSEt) + w (1/m)  ...(1) 
 

In this equation MSEt is mean square error of test 
set 21, m is the number of variables in the represented 
model and w is a parameter between 0 and 1 that 
implies the weights of m in the value of fitness. In 
fact the value of w determine the number of variables 
exist in the chromosome. 

Some experiments were applied using different 
value for w. Results obtained showed that for small 
value of w the number of variables in the fittest 
individual was high and on the other hand if the value 
of w was to be high the number of variables in the 
best chromosome was small. Hence after some 
experiments the value of w was set to be 0.7. It is 
worth noting that the parameter of w was determined 
in a primary study, before the overall genetic 
algorithm optimization has been carried out. Here for 
the calculation of the fitness of each chromosome a 
non linear model was constructed using variables 
consists in each chromosome separately ANN and the 
value of MSEt was calculated using this model. This 
procedure was applied for each chromosome 
separately.   
 
Artificial neural network 

Artificial neural network (ANN) is generally 
applied as a technology offering an alternative way to 
simulate ambiguous and complex problems. The 
importance of using neural networks in process 
modelling is that they have learning and 
generalization abilities as well as nonlinearity. 
Numerous applications of ANN have been known in 
pattern recognition, materials modelling, data analysis 
and property prediction22-25. A neural network is a 
computational structure, consisting of a number of 
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highly interconnected processing units called neurons. 
The neurons are connected to each other by weighted 
links over which signals can pass. Each neuron 
receives multiple inputs from other neurons in 
proportion to their connection weights and generates a 
single output, which may be propagated to several 
other neurons26. Among different types of ANN 
models, back-propagation (BP) algorithm, an iterative 
gradient algorithm, is so popular that it has been used 
for the present work. BP neural network consists of an 
input layer, one or more hidden layers and output 
layers. In order to train the network using the BP 
algorithm, the differences between the ANN output 
and its desired value are calculated after each training 
iteration and the values of weights and biases 
modified by using these error terms. In the present 
work, an ANN program was written in MATLAB7 in 
our laboratory. This network was feed-forward fully 
connected that has three layers with sigmoidal transfer 
function. The network inputs are selected descriptors, 
the signal of the output node represents the pKi value 
for sulfonylurea herbicides and the number of nodes 
in the hidden layer would be optimized. The 
Levenberg-Marquardt (LM) algorithm is one of the 
most efficient learning algorithms for neural 
networks27. The advantages of using LM algorithm 
are that specifying momentum or rate is not necessary 
and training processes are much more rapid. 
Therefore, in this work LM algorithm was used to 
develop the nonlinear model. The ANNs cannot be 
able to select important descriptors that would be used 
as its inputs; therefore it is necessary to apply a 
variable selection method. In this work, we use 
genetic algorithm and stepwise multiple regression 
feature-selection methods for these purpose. Then the 
optimized network was trained using training set for 
the adjustment of weights and biases values. It is 
known that a neural network can become over-fitted. 
An over-fitted network has usually learned the 
stimulus pattern it has seen perfectly, but cannot give 
an accurate prediction for unseen stimuli, and it is no 
longer able to generalize. There are several methods 
for overcoming this problem. One method is to use a 
test set to evaluate the prediction power of the 
network during its training. In this method after each 
200 iterations, the network was used to calculate the 
inhibition constants of molecules included in the test 
set. To maintain the predictive power of the network 
at a desirable level, training was stopped when the 
value of error for the test set started to increase. Since 

the test error is not a good estimate of the 
generalization error, the prediction potential of the 
model was evaluated on a third set of data, named the 
prediction set. The compounds in the prediction set 
were not used during the training process and were 
reserved to evaluate the predictive power of the 
generated ANN.  
 

Results and Discussion  
Nonlinear model 

The data set and corresponding observed and 
predicted values of the pKi of all molecules studied in 
this work are shown in Table 1. For the selection of 
the most important descriptors both genetic algorithm 
and stepwise multiple regression techniques were 
used. Then these descriptors were used as inputs for 
generated ANNs. In other hand, two separate ANNs 
were constructed that used these descriptors as inputs 
and their outputs are pKi values of interesting 
molecules. These models referred as GANN and 
stepwise-NN, respectively. Applied GA contained a 
population of 100 individuals, which evolved for 300 
generations, crossover probability 0.9 and mutation 
probability 0.01. Then by comparison between the 
fitness values of individuals, the best model was 
chosen. The process of the genetic algorithm is shown 
in Fig. 1 for all the generations from the beginning to 
the end of the process. The best fitness plot for the 
GA maps the gradual convergence of the best fitness 
values of successive generations towards the final 
optimum value. It indicates that for this case study, 
after 300 generations, the optimal results can be 
obtained. 

Table 2 shows the names of descriptors of the 
ANNs models that their descriptors were chosen by 
stepwise multiple regression and GA methods. 
Although the number of descriptor in two models are 
identical but they are differ from each other. In order 
to optimize the number of nodes in hidden layer and 
to control over-fitting of the network, the values of 
mean square error of training (MSETrain) and mean 
square error of test (MSETest) were monitored during 
the training procedure (Fig. 2). The minimum MSEs 
at the beginning of over fitting appeared in number of 
nodes and number of epochs equal to 7 and 6, 
respectively. So these values were considered as 
optimum. Table 3 shows the architecture and 
specification of the optimized network. The statistical 
parameters obtained by these models for the training 
and prediction set were shown in Table 4. These 
simulations demonstrated some significant differences 
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Table 1 ― Structures of 68 herbicides and their calculated and experimental values of pKi for this data set.  

S
O

O

R 1

N H
O

N H
N

X
N

R 2

R 3  
General structure for sulfonylurea 

pKi(Cal) pKi(Exp) X R3 R2 R1 Compd 
6.12 6.61 CH H CH3 NO2 1 ∆ 
6.34 6.57 CH H CH3 COOC2H5 2 
6.15 6.44 CH H CH3 COOCH3 3∆ 
6.33 6.31 CH H OCH3 COOC2H5 *4 
6.34 6.19 CH H Cl COOC2H5 5 
6.12 6.11 CH H C2H5 NO2 6∆ 
5.94 5.96 CH H OC2H5 NO2 7∆ 
5.95 5.92 CH H CH3 COOCH2CH2Cl 8 
4.95 5.90 CH H CH3 COOCH(CH3)2 *9 
4.78 5.89 CH H OCH3 COOCH(CH3)2 *10 
5.68 5.85 CH H OCH3 COOCH2CH2Cl 11 
5.27 5.75 CH H SCH3 NO2 12 
5.67 5.68 CH H OC2H5 COOC2H5 13 ∆ 
5.47 5.65 CH H OCH3 COOCH2Phenyl 14 
5.64 5.52 CH H CH(CH3)2 NO2 15 
5.94 5.49 CH H SCH3 COOCH3 16 ∆ 
5.18 5.27 CH H OCH3 Cl 17 
4.13 5.08 CH H CH3 COOCH2Phenyl *18 
4.94 4.95 CH H OCH(CH3)2 COOC2H5 19 
5.67 4.91 CH H OC2H5 COOCH3 20∆ 
5.27 4.89 CH H CH3 COOCH2Cyclohexyl ∆21 
4.87 4.86 CH H OC3H7 COOCH3 22 
4.81 4.82 CH H OCH3 COOCH2Cyclohexyl 23 
4.52 4.80 CH H CH3 COOC2H4OC2H5 24 
4.48 4.60 CH H OCH3 COOC2H4OC2H5 25 
4.52 4.52 CH H OCH2CH2F COOCH3 26 
4.01 4.49 CH H H NO2 *27 
4.44 4.48 CH H H COOCH3 28 
4.07 4.43 CH H OC2H5 Cl 29 
4.70 4.29 CH H CH3 NHCOCF3 30 
4.41 4.29 CH H SC2H5 NO2 31 
4.69 4.25 CH H OCH3 NHCOCF3 *32 
4.49 4.04 CH H SC2H5 NO2 33 
3.84 4.00 CH H OC2H5 NHCOCF3 34 
4.22 3.71 CH H OCH3 COOC2H4OCH3 35 
3.51 3.64 CH H NHCH3 COOC2H5 36 
3.41 3.43 CH H CH3 COOC2H4OCH3 37 
3.41 3.43 CH H N(CH3)2 COOC2H5 38 
3.83 3.22 CH H NHCH3 NO2 39 
2.89 2.80 CH H OC2H4OCH3 COOC2H5 40 
2.59 2.64 CH H OC2H4OC2H5 COOC2H5 41 

(Contd.)
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Table 1 ― Structures of 68 herbicides and their calculated and experimental values of pKi for this data set. (Contd.) 

N H
N

NO

N

R 2

z

Y S

O

O

R 1

 
General structure for monosubstituted sulfonylurea 

pKi (Cal)    pKi (Exp)  Z Y R2 R1 Compd 
3.16 4.07 H CH2 CH3 COOCH3 *42 
4.11 4.03 H CH2 NHCH3 COOCH3 43 
3.80 3.84 H CH2 OCH2CH3 COOCH3 44 
3.74 3.88 H O CH3 COOCH3 45 
3.98 3.72 H O C2H5 COOCH3 *46 
4.27 3.73 H O CH3 OCH3 47 ∆ 
3.39 3.57 C4H9 - CH3 NO2 48 
3.62 3.43 (C2H5)CHCH3 - CH3 NO2 49 
2.99 3.22 CH3 - CH3 NO2 50 
4.07 3.05 CH3 - CH3 COOC2H5 *51 

N H
O

N H
N

N

R 2

R 3

N
N

S
O

O
C H 3

O
O C H 2 C H 3

 
General structure for pyrazole sulfonylurea 

pKi(Cal)   pKi(Exp)  R3 R2 Compd 
4.95 4.65 H CH3 52 
4.65 4.50 H OC2H5 53 
3.12 3.74 H SCH3 *54 
3.70 3.70 

S
O

O
N H

O O M e

O N

 

a typical pyridine 

55 

3.47 3.22 

S
O

O

N H

O O C H 2 C H 3

O N

 

a typical pyridine 

56 

3.44 3.53 

S
O

O
N H

O O - C 2 H 4 - O - C H 3

O
N H

N

S C H 3  

a typical thiazole 

57 

2.97 2.92 

S
O

O

N H

O O - C H 2

O
N H

N

S C H 3  

a typical thiazole 

58 

(Contd.)
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Table 1 ― Structures of 68 herbicides and their calculated and experimental values of pKi for this data set. (Contd.) 
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bensulfuron methyl 

59 

9.70 8.08 
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O
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C l

O M e  
chlorimuron ethyl 
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O M e  
chlorsulfuron 

61 

7.42 7.28 
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O
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N H
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N H
N

N
N

O C H 2 C H 3

N H C H 3  
ethametsulfuron methyl 

62 

8.09 8.05 
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ethoxysulfuron 

63 

8.81 7.97 
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metsulfuron methyl 

*64 

6.87 7.00 
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pyrazosulfuron ethyl 

65 

7.03 7.40 

S
O

O

O
O M e

N H
O

N H
N

N

C H 3

C H 3  
sulfometuron methyl 

∆66 

(Contd.)
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Table 1 ― Structures of 68 herbicides and their calculated and experimental values of pKi for this data set. (Contd.) 
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O M e  
thifensulfuron methyl 

67 

6.45 6.50 

S
O

O

O O M e

N H
N

N
NO

N
C H 3

C H 3

O M e  
tribenuron methyl 

68 

* Test set 
 ∆Prediction set 
 

 

Table 2―Definitions and notations of descriptors for stepwise-NN and GANN. 

Stepwise-NN  GANN  
Descriptor Notationa Descriptor Notationa 
Highest eigenvalue BEHm8 Randic-type eigenvector VRA1 
Superpendentic index SPI Moran autocorrelation MATS8v 
Average eigenvector coefficient VEZ2 Radial distribution function RDF105m 
Complementary information content CIC4 Molecular representation of structure Mor30u 
Structural information content  SIC2 Autocorrelation H2e 
Second Mohar index TI2 Number of ethers nROR 
Salvation connectivity index X5sol No. of X—CR—X C-031 
aThe notations are based on Dragon software.  

 
 

Fig. 1— The results of genetic algorithm for 300 generations. 
 

between two networks. It can be seen from this table 
that statistical results of the GANN are better than 
other method. Also these results reveal that the GA is 
superior method for feature-selection in this QSAR 
study. The predicted values of the pKi using GANN 
model for data set were shown in Table 1. Fig. 3 
shows a plot of the GAANN calculated versus the 
experimental values of pKi for the data set molecules.  

 
 

Fig. 2— Learning curve for the ANN. 
 

Correlation coefficient of 0.957 for this plot  
confirms the suitability of the ANN model to  
predict of permeability coefficient. Results obtained 
reveals that there are some nonlinear relation  
between the inhibition constant of sulfonylurea 
herbicides and the selected structural molecular 
descriptors.  
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Table 3―Architectures of the optimized ANN. 

7 
5 
1 

16 
0.001 

trainlm 

Number of nodes in the input layer 
Number of nodes in the hidden layer 
Number of nodes in the output layer  
Number of epoch in the beginning of over-fitting  
Momentum 
Training function  
 

 

Table 4―Statistical parameters obtained using stepwise-NN and 
GANN models.  

Model MSEt MSEp Rt Rp Ft Fp 
GANN 0.084 0.325 0.988 0.954 1823 80 

stepwise-
NN 

0.337 0.445 0.917 0.862 263 17 

ttraining set 
pprediction set 

 
Model validation 

In spite of good accuracy and apparent mechanistic 
appeal, QSPR models should pass rigorous validation 
tests to be useful as reliable screening tools.  
Y-randomization test is a tool used in validation of 
QSTR models, whereby the performance of the 
original model in data description is compared to that 
of models built for permuted (randomly shuffled) 
response, based on the original descriptor pool and the 
original model building procedure. The Yscrambling 
procedure was performed to ensure that there is not any 
chance correlation in data matrix28. The mean value of 
R after 20 times Y-scrambling was 0.346, which 
disapproved the chance correlation probability. The 
real usefulness of QSTR models is not just their ability 
to reproduce known data, verified by their fitting power 
(R), but is mainly their possibility of predictive 
application. For this reason internal validation, leave 
one out cross-validation (LOO) and leave 8 out (L8O) 
were applied on GANN model which resulted in square 
cross validated correlation coefficient Rcv

2 and Q2 are 
(0.886) and (0.946) respectively, which confirmed 
good predictive ability of this model.   
 
Interpretation of descriptors 

In this work, quantitative relationships between 
inhibition constants of sulfonylurea herbicides and 
their structural descriptors were investigated by using 
non-linear approach.  

Seven descriptors appeared in the GANN model; 
Randic-type eigenvector-based index from adjacency 
matrix (VRA1), Moran autocorrelation (MATS8v), 
Radial distribution function (RDF105m), 3D 
Molecule representation of structure based on electron  

 
 

Fig. 3—Plot of the GANN calculated values of pKi against the 
experimental ones. 
 

 
 

Fig. 4—Sensitivity analysis results. 
 
diffraction (Mor30u), H autocorrelation (H2e), 
Number of ethers (aliphatic) (nROR), X—CR—X 
Atom-centred fragments (C-031)29.  

To determine the order of importance of 
descriptors in GANN model, the sensitivity analysis 
was performed. According to this method, the 
differences between the mean-square error (MSE) of 
the complete data set and the MSE were obtained 
when the ith variable is excluded from the trained 
network (MSEi), and were shown as Mdiffi (2);  
 

Mdiffi = MSEi – MSE  ... (2) 
 

It is obvious that the most important variable is the 
one that leads to the highest value of Mdiffi. The 
values of Mdiffi for GANN model were calculated 
and plotted in Fig. 4. As it can be seen in this figure, 
the orders of importance of selected molecular 
descriptors are; H2e > MATS8v > nROR > C-031 > 



INDIAN J. CHEM. TECHNOL., MARCH 2016 
 
 

130 

Mor30u > RDF105m > VRA1. According to the 
sensitivity analysis results, among these 7 descriptors 
the GANN model has the least and most sensitivity to 
VRA1 and H2e descriptors respectively. This means 
that H2e is the most effective parameter in inhibition 
of AHAS by the sulfonylurea herbicides. 
 
Conclusion 

In the present study, both stepwise-NN and GANN 
approaches were used to develop the QSAR model for 
prediction of inhibition constant for sulfonylurea 
herbicides. The statistical results showed that the best 
model was GANN that combines genetic algorithm as 
variable selection technique and artificial neural 
network as feature mapping method. The superiority 
of this model accomplishes two messages. First, the 
evolutionary programming of genetic algorithm is 
very effective in the selection of the best descriptors, 
second, the strength of neural network in their ability 
to allow for flexible mapping of the selected features 
by manipulating their functional dependence 
implicitly, unlike regressions analysis. Finally 
descriptors appearing in these QSAR models provide 
related to different molecular properties, which can 
participate in the inhibition of AHAS by the 
sulfonylurea herbicides.  
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