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In this paper, the drilling behavior of a new class of composite materials has been experimentally investigated. The 
composite laminates have been manufactured using glass fibers, epoxy resin, and filler materials. The abundantly available 
agro-based waste materials (coconut coir, rice husk, and wheat husk) have been used as filler materials. The drilling 
experiments have been performed at several levels of feed (0.03 to 0.3 mm/rev.) and speed (90 to 2800 RPM) using different 
types of drill bits. The effect of these parameters on the drilling forces (axial thrust and torque) has been analyzed for all 
types of laminates under investigation. The artificial neural network-based models have also been proposed to compute the 
drilling forces. The fitness of the models has been measured in terms of mean percentage error between the predicted and 
actual values. From the investigation, it has been found that the drilling forces computed by the neural network models were 
quite close to the experimental values. 
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1 Introduction 
Manufacturing of polymer composites can be 

bifurcated into, (i) primary manufacturing and (ii) 
secondary manufacturing. A near-net-shape product 
can be obtained through the primary manufacturing of 
composites. But the manufacturing of intricate 
products necessitates the fabrication of multiple parts 
to obtain the final product. These parts are then 
assembled by installing mechanical fasteners. The 
traditional drilling operation is an inevitable 
secondary operation that is extensively used to 
generate holes in composite to facilitate the 
installation of mechanical fasteners. But drilling of 
composites does cause significant damage to the hole 
which leads to poor structural integrity and assembly 
tolerance, reduced part life, and load-bearing 
efficiency. The damage of the hole is significantly 
influenced by the forces generated during drilling. 
These forces can be minimized by selecting the 
optimum drill bit geometry and cutting parameters 
(feed and speed)1. The lower value of drilling forces 
results in the production of superior quality holes. 
Singh and Bhatnagar2 inferred that both axial thrust 

and torque are increased with feed during drilling of 
composites. Mohan et al.3 established the fact that the 
effect of speed and size of the drill bit on the axial 
thrust is more significant than thethickness of the 
composite and feed of the drill bit. The effect of drill 
size and composite thickness were found to be 
significant parameters for torque. Tsao4 concluded 
that the cutting parameters are the vital parameters 
that exert an influence on the forces and delamination 
produced during drilling of polymer composites. 
Krishnaraj et al.5 showed that feed has a substantial 
influence on the axial thrust, hole size, and 
delamination. Duraoet al.6 stated that maximum axial 
thrust and delamination are obtained at a higher level 
of feedand speed. Abraoet al.7 and Mathew et al.8 

investigated the influence of solid and hollow drill 
geometries on the forced induced during drilling of 
composites. The optimum drill geometry was 
identified in the context of making damage- 
free holes in composites. Velayudham and 
Krishnamurthy9 established the fact that drill 
geometry had a significant influence on force and 
delamination during drilling of glass/phenolic 
composites. The tripod drill bit produces the least 
damage to the hole relative to the normal drill bit 
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(point angle of 118°) and web thinned drill bit (point 
angle of 85°). Khashaba10 stated that the delamination 
is a function of feed. This implies that the axial  
thrust is increased with feed during drilling of 
glass/polyester and glass/epoxy composites. 
Palanikumar11 asserted that the axial thrust and 
delamination are closely related to each other. Hence, 
an increase in axial thrust results in increased 
delamination. It was also established that the axial 
thrust is not the only factor that causes damage to the 
hole; torque also contributes to the damage of the 
hole12. Hocheng and Dharan13emphasized the 
importance of critical axial thrust above which the 
delamination occurs. Various analytical models were 
also proposed to compute the critical axial thrust14-17. 
Tsao and Hocheng18developed a relationship among 
the cutting parameters and axial thrust using a 
multivariable linear regression approach. Fernandes 
and Cook19proposed the axial thrust and torque 
models for carbon/epoxy composites during drilling 
with the ‘one-shot’ drill bit. Langella et al.20 Proposed 
a mechanistic model that can compute the forces 
induced in the drilling of glass/epoxy composites 
using a traditional twist drill bit. The neural network 
technique which is more generic was also applied to 
develop the force models. One of the striking features 
of the neural network algorithm is that information 
about the input parameters is not required to solve the 
complex nonlinear problems. Also, any number of 
parameters can be considered to solve the problem 
using neural network architecture. The neural network 
models were successfully applied to minimize the 
axial thrust and delamination during drilling of 
composites21,22. Mishra et al.23 Applied the neural 
network based on the backpropagation algorithm to 
compute the delamination. It was found that the radial 
basis function neural network computes the axial 
thrust more precisely than the response surface 
methodology24. Athijayamani et al.25 also 
recommended that the neural network models can 
compute better axial thrust and torque values than the 
regression models. 

From the literature, it was observed that no attempt 
has been made to investigate the drilling behavior of 
glass fiber-reinforced composites filled with agro-
based waste materials. Hence, the motivation behind 
the work is to cover the gap in the literature pertaining 
to the drilling behavior of fiber-reinforced polymer 
composites. Therefore, in this research endeavors, the 
drilling behavior of unfilled and agricultural waste-
filled glass/epoxy composites is experimentally 

investigated. The neural network models were also 
proposed to predict the forces generated during 
drilling of the developed laminates. 
 
2 Experimental Details 
2.1 Composite Preparation 

The laminates (thickness of 4 mm) were prepared 
using a wet lay-up process at ambient temperature. 
Glass fiber (ρ=2.62 g/cm3and d=10-20 µm) and agro-
waste materials were used as reinforcement and filler 
materials, respectively. Araldite epoxy resin LY556 
(ρ=1.12 g/cm3 at 25℃) and hardener HY 951  
(ρ=1 g/cm3 at 20℃) were used as matrix materials. 
One of the important characteristics of the epoxy is 
that it exhibits low shrinkage. It has also excellent 
adhesion property to a variety of substrate materials. 
The epoxy molecule also comprises of two ring 
groups at its center which is able to absorb both 
thermal and mechanical stresses and thus give the 
epoxy resin good stiffness, toughness, and heat 
resistance26-28. The fillers were incorporated in a ratio 
of 5 wt.% of glass fiber. This proportion was decided 
after a pilot study with an aim to ensure (i) proper 
wetting between the fiber or filler and matrix and  
(ii) better mechanical and physical properties of the 
developed laminates. The properties of the developed 
composites were evaluated and already published29. 
The benefit of using agricultural waste is that it 
reduces the weight and cost of the composites. A total 
of four different types of composites were 
fabricated(i) unfilled- (GFREC), (ii) rice husk- 
(GFREC/R),(iii) wheat husk- (GFREC/W), and (iv) 
coconut coir- (GFREC/RC) filled glass fiber-
reinforced epoxy composites. 
 
2.2 Drilling Experiments 

The holes were produced in the developed 
laminates using a radial drilling machine at the feed of 
0.03, 0.05, 0.08, 0.12, 0.19, and 0.3 mm/rev. and 
speed of 90, 224, 450, 900, 1800 and 2800 RPM 
using solid carbide twist and parabolic drill bits of 4 
mm in diameter. The force signals were recorded with 
the help of a drill dynamometer (9272A, Kistler, 
Switzerland). The force signals were amplified using 
a multi-channel charge amplifier (5070A, Kistler, 
Switzerland). The dynamometer was coupled with a 
computer via analog-digital (A/D) converter card. The 
maximum axial thrust (Fz) and torque (Mz) values 
were recorded for making of 288 holes in different 
laminates. The scheme of the drilling setup is shown 
in Fig. 1. 
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3 Modeling using Levenberg-Marquardt 
Algorithm (LMA) 

The artificial neural network was applied to develop 
the proposed models for axial thrust and torque. The 
input-output mapping of axial thrust and torque is quite 
complex for drilling of composites. LMA was applied 
over conventionally used error back propagation 
training algorithms (EBPTA) because LMA enables to 
acquire more subtle information of a complicated 
mapping. Basically, it is a Hessian-based algorithm that 
uses the batch learning process for the optimization of 
non linear least squares. A code was written in 
MATLAB (R2008b) to develop the neural network 
architecture. The developed neural network 
architecture consists of the following three layers viz. 
input layer, hidden layer, and output layer. The input 
layer consists of five neurons. Four input variables 
consist of four neurons and one neuron for the bias. 
The output layer consists of one neuron which 
corresponds to one output i.e., either axial thrust or 
torque. It is worth mentioning that training of the 
neural architecture for one output variable renders the 
model less complex. Thus, the model can compute 
better results. The number of neurons in the hidden 
layer depends on input classifications and vector size as 
well. A few neurons may result in under fitting and 
many neurons may result in over fitting. The optimal 
solution was found by varying the neurons in the 
hidden layer. The creation of a good network is time-
consuming and hence, a simple approach was followed 
to find the best network as presented in Fig. 2.  

The hidden layer consists of 36 neurons. A total of 
38 neurons were used in neural architecture. The 
activation function considered for the hidden layer 
was tan-sigmoid function whereas; pure linear 

function was used for the output layer. The default 
values for	μିଵ is 0.1 and μାଵ is 10 (where, μ	is 
damping factor). The initial value of μ	was 0.001 and 
the maximum value of µ was set as 1010. The initial 
weights were kept below 1 in hidden and input layers, 
respectively. For both proposed models, 230 data sets 
were randomly selected and used as training data sets. 
Once, the neural network architecture was trained, the 
rest 58 data sets were used for testing. The 
characteristic values of the proposed models are 
shown in Table 1.The neural network models were 
trained to yield the minimum mean square error, 
minimum mean percentage error, and maximum 
coefficient of correlation between the neural networks 
computed values and the actual values. All three 

 

Fig. 1 — Scheme of the experimental setup. 
 

Fig. 2 — Flow chart to find out the best network. 
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criteria were checked during the training and testing 
of the models. The mean square error and mean 
percentage error was calculated using equation 1 and 2, 
respectively. It was suggested that the mean 
percentage error should be lower than 10% in training 
or testing for both the proposed models. 

 𝐸௉ = 	 ଵଶ ∑ ∑ 	(௄௞ୀଵ௉௣ୀଵ 𝑑௞,௣ − 𝑂௞,௣)ଶ  … (1) 
 

where,  𝐸௉ = Mean	square	error, 𝐾	 = 	Number	of	neurons	in	the	output	layer, 𝑂௞,௣= Actual	output	at	the	output	neuron	k	for	input	p,	 𝑑௞,௣ =Desired	output	at	the	output	neuron	k	for	input	p, and  𝑃	 = 	Total	number	of	training	patterns, 
 

MPE = ∑ (௧௔௥௚௘௧೛ି	௢௨௧௣௨௧೛	)	௧௔௥௚௘௧೛௉௣ୀଵ × 100 …(2) 
 

where, 	𝑀𝑃𝐸	 = 	Mean	percentage	error, and 𝑃	 = 	Total	number	of	training	or	testing	pairs 
 

4 Results and Discussion 
4.1 Analysis of Axial Thrust 

The response of axial thrust during drilling of the 
developed laminates is presented in Fig. 3 to Fig. 5. It 
was established that the drilling behavior of the 
laminates with the twist drill bit is substantially 
different from the parabolic drill bit. It is clear from 
the figures that the axial thrust generated during 
drilling with the parabolic drill bit is lower than the 
twist drill bit under identical experimental conditions. 
This indicates that the drilling-induced damage is less 
during drilling with the parabolic drill bit. The chisel 
edge of the parabolic drill bit is merely a point. On the 
contrary, the twist drill bit has a flat chisel edge. 

Moreover, the flank face of the parabolic drill bit is 
designed in such a fashion that it facilitates easy and 
quick ejection of formed chips. These features of the 
parabolic drill bit render the cutting operation 
smooth29. Thus, both the forces and damage produced 
with parabolic drill bit are relatively less as compared 
to the twist drill bit. It was also noted that the axial 
thrust tends to decrease with speed at the lower feed 
(0.03 mm/rev.) for both the drill bits (Fig. 3(a) and 
Fig. 3(b)). But at the high feed (0.3 mm/rev.), an 
abrupt variation in the axial thrust was observed for 
twist drill bit as indicated in Fig. 4(a). However, the 
drilling with parabolic drill bit results in a gradual 
decrease in axial thrust with the speed of the drill bit 
at the feed of 0.3 mm/rev. (Fig. 4(b)). Both axial 
thrust and torque are decreased with the speed of the 
drill bit because the higher speed results in more heat 
generation at the interface between the drill tip and 
laminate. The low thermal conductivity of the 
composite constituents results in the accumulation of 
heat at the machining zone. The accumulation of heat 
results in the deformation of epoxy resin as the resin is 
prone to change its structure at elevated temperatures. 
The shearing or cutting of deformed or softened 
polymer necessitates lesser amounts of axial thrust and 
torque30. However, aberrations in the experimental 
results are detected due to the manufacturing defects 
such as voids, fiber displacement, and resin-rich areas. 
This implies that at higher feed the parabolic drill bit 
renders the cutting of fiber and matrix quite smooth as 
compared to the twist drill bit.  

Figure 5 (a & b) shows that the axial thrust 
increases linearly with the feed for both the drill bits 
under investigation. The thickness of the uncut chip is 
increased with the feed of the drill bit. This indicates 
that the material offers higher resistance to form  
the chip. Therefore, higher axial thrust  and  torque   is 
 

Table 1 — Neural network predictive models.  

S.No. Characteristic values Axial thrust model Torque model 

1. Number of training datasets 230 230 
2. Number of testing datasets 58 58 
3. Number of hidden layers 1 1 
4. Activation function used in first layer Tansigmoid Tansigmoid 
5. Activation function used in second layer Pure linear Pure linear 
6. Mean percentage error in training data sets 3.03 % 4.54 % 
7. Mean percentage error in test data sets 4.93 % 7.45 % 
8. Coefficient of correlation between predicted and experimental values for training data sets 0.9969 0.9920 
9. Coefficient of correlation between predicted and experimental values for testing data sets 0.9925 0.9844 

10. Mean square error in training 19.17 0.81 
11. Mean square error in testing 31.81 1.70 
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Fig. 3 —Variation of axial thrust with speed obtained at feed of 0.03 mm/rev for (a) twist drill bit and (b) parabolic drill bit. 
 

 
 

Fig. 4 — Variation of axial thrust with speed obtained at feed of 0.3 mm/rev for (a) twist drill bit and (b) parabolic drill bit. 
 

 
 

Fig. 5 — Variation of axial thrust with feed for (a) twist drill bit and (b) parabolic drill bit. 
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required to remove the material. This corroborates the 
findings of other reported work30. The axial thrust 
obtained during drilling of GFREC filled with natural 
fillers was less than the unfilled GFREC at most of 
the speeds and feeds. This recommends that the use of 
natural fillers does not lead to an increase in axial 
thrust and hence, less amount of drilling-induced 
damage is expected. Thus, natural fillers can be used 
to reduce the weight and cost of the resultant 
composites. As shown in Fig. 5 (a & b), a linear 
increase in axial thrust with feed was observed while 
holes are produced in laminates using both the drill 
bits. The increase was so steep that the axial thrust 
generated at a feed of 0.3 mm/rev. is at least twice 
that of axial thrust recorded at a feed of 0.03 mm/rev. 

4.2 Analysis of Torque 
The response of torque for all types of laminates is 

presented in Fig.6 to 8. The figures depict that the 
torque produced during drilling with the parabolic 
drill bit is relatively less than the twist drill bit. From 
Fig. 6, it can also be stated that the torque increases 
almost linearly with feed at all speeds for all the drill 
bits and laminates under investigation. The torque 
generated at a feed of 0.3 mm/rev. is at least three 
times higher than that generates at a feed of 0.03 
mm/rev. The variation of torque with speed for twist 
and parabolic drill bits are presented in Fig. 7 and 
Fig.8, respectively. It is quite evident in the figure that 
the torque initially decreases with speed and then 
becomes more or less stationary at a higher  speed  for  
 

 
 

Fig. 6 — Variation of torque with feed for different composite materials. 
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Fig. 7 —Variation of torque with speed obtained at feed of 0.05 mm/rev for (a) twist drill bit and (b) parabolic drill bit. 
 

 
 

Fig. 8 — Variation of torque with speed obtained at feed of 0.3 mm/rev for (a) twist drill bit and (b) parabolic drill bit. 
 

both the drill bits. The torque value obtained during 
drilling with a twist drill bit at a feed of 0.05 mm/rev. 
was low for GFREC/C as shown in Fig. 7(a). Whereas, 
the torque value obtained during drilling with the 
parabolic drill bit was low for GFREC/R (Fig. 7(b)). 
An abrupt variation in torque value was observed while 
drilling was performed at the high feed of 0.3 mm/rev. 
for the laminates under investigation as depicted in Fig. 
8(a) and Fig. 8(b), respectively.  
 
4.3 Prediction of Axial Thrust and Torque 

The axial thrust and torque obtained during drilling 
of the laminates present a complex mapping. Hence, 
LMA was applied to develop the proposed neural 
network models. The accuracy of the proposed 
models was verified by computing different 
characteristic values as shown in Table 1. The results 
indicate that the proposed neural network models are 
quite adequate to compute the axial thrust and torque 

precisely. Hence, this is recommended that the 
proposed models can be utilized to compute the axial 
thrust and torque generated during drilling of the 
laminates so that the drilling-induced delamination 
can be minimized. To validate the accuracy of the 
models, a comparative study between the actual or 
experimental and computed values were done for 
training and testing data sets. Fig. 9 and Fig. 10 
represent the relative difference between the 
computed and actual values of axial thrust for both the 
training and testing data sets. The figures indicate that 
the axial thrust computed by the developed model is 
quite close to the actual axial thrust. Fig. 11 and  
Fig. 12 shows the adequacy of the neural network 
models for the torque. The computed values of torque 
were found to be very close to the actual torque for 
both training and testing data sets. The error in the 
computed values of axial thrust and torque was found 
to be less than 10%. This  inferred  that  the  proposed  
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Fig. 9 — Actual versus predicted value of axial thrust for training data set. 
 

 
 

Fig. 10 — Actual versus predicted value of axial thrust for test data set. 
 

 
 

Fig. 11 — Actual versus predicted value of torque for training data set. 
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Fig. 12 — Experimental and predicted value of torque for test data sets. 
 

neural network models can compute the values to a 
great deal of accuracy. This indicates that the learning 
capabilities of the proposed neural networks are quite 
efficient. 
 

5 Conclusions 
The major findings can be inferred from the present 

study are: 
(i) The axial thrust and torque generated by the 

parabolic drill bit were quite low as compared 
to the traditional twist drill bit.  

(ii) The drilling with twist drill bit results in 
decreasing axial thrust with the increasing 
speed at low feed but no definite trend was 
observed at the high feed. Whereas, drilling 
with parabolic drill bit results in a gradual 
decrease in axial thrust with the speed of the 
drill bit.  

(iii) The axial thrust and torque increased almost 
linearly with an increase in feed at all speeds 
with both the drill bits. The torque was found 
to be decreased with an increase in the speed 
of the drill bits. However, abrupt variations in 
torque values were observed during drilling of 
GFREC and GFREC/R at the high feed. 

(iv) The axial thrust generated with the parabolic 
drill bit is close to each other for all the 
developed composites. Therefore, agricultural 
waste can be incorporated with the glass fiber 
to fabricate the composites to reduce the 
weight and cost of the resultant composites.  

(v) The prediction done by the proposed models 
using the training and testing data sets were 
close to the actual values. The mean 

percentage error was found to be less than 
10% in case of training and testing of both the 
models.  

(vi) A similar type of model can be developed to 
compute the axial thrust and torque and 
subsequently the damage of the hole for 
another type of composites and drill bits to 
assist the industry for the production of clean-
cut and damage-free holes in composites. 
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