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This paper presents the design, analysis and optimization of Active Magnetic Bearings (AMBs) to support the inner rotor 
in a contra-rotating coaxial rotor system. An FEM based rotordynamic model is developed using 8-dof Timoshenko beam 
elements assuming both inner and outer rotors to be flexible. The dynamic response of this system due to an unbalanced 
force is used in one of the constraints of a multi-objective genetic algorithm for controlling the vibration amplitude within 
10% of the air gap. A maximum reduction of 46.9% in the amplitude peak is obtained under the present conditions. Hence, 
this work also offers a tool useful in touch-down bearing design. The PD controller gains are found to govern the stiffness 
and damping properties of the AMB. On increasing the mass unbalance by a factor of 2.5, number of turns, pole width and 
maximum current are found to increase by 52.9%, 29.4% and 71.67% respectively. 
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1 Introduction 
Coaxial Rotor Systems (CRSs) are widely used in 

aerospace industry and nuclear power plants because 
of their advantages over single rotor systems. For 
instance, in the case of helicopters, a contra-rotating 
CRS eliminates the need of a separate anti-torque 
system and at the same time, the overall system 
becomes more compact. Coaxial rotor system consists 
of inner and outer rotors which are connected by an 
intershaft bearing. In general, the whole system is 
supported by conventional bearings and dampers 
which provide the required stiffness and damping. 
Chiang et al.1 modelled single and dual rotor system 
and predicted the natural frequencies, critical speed 
and bearing stiffness for different speed ratios. 
Ferraris et al.2 studied the dynamic behaviour of non-
symmetric coaxial rotors. Yang et al.3 considered 
fixed point rubbing and studied the phenomenon of 
beat vibration in dual rotor system. 

In recent years, active magnetic bearings (AMBs) 
have gained popularity over conventional bearings 
because AMBs not only support the load but also 
control the rotordynamics of the system actively 
through a feedback control loop. So, it is important to 
study the behaviour of coaxial rotor system 
incorporating AMBs. These bearings use attractive 
electromagnetic force to support the rotor and allow 

contactless relative motion between the rotor and the 
bearing. Consequently, no mechanical wear takes 
place and no lubrication is required during its 
operation.4 Bornstein5 developed expressions for 
calculating dynamic load capacity of active 
electromagnetic bearings. Samanta & Hirani6 studied 
different radial configurations for improving the load 
carrying capacity and other dynamic factors of 
magnetic bearing. Lijesh et al.7 dealt with a pragmatic 
optimization of axially stacked passive magnetic 
bearings for maximum radial load capacity. Kuppa & 
Lal8 proposed a methodology for coupled turbine 
generator AMB system and developed a mathematical 
relationship for a misaligned rotor system while 
considering rotor imbalance. Srinivas et al.9 studied 
misalignment in coupled rotor systems using the 
dynamic component of coupling stiffness. In this work, 
AMBs were employed as auxiliary bearings and also 
for condition monitoring. Zhao et al.10 studied the 
rotordynamic behaviour for the case of vertical rotor 
drop, while Yulan et al.11 considered horizontal rotor 
drop in their dynamic analysis. Moreira & Thouverez12 
studied the influence of blade flexibility in a 
turbomolecular pump rotor supported on AMBs. 

Amongst the various optimization techniques 
available in literature, genetic algorithm (GA) is the 
most widely used technique for AMBs because of its 
advantages over the others. Rao & Tiwari13 applied 
multiobjective genetic algorithm for the optimization 
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of thrust magnetic bearings. Zhong & Palazzolo14 

optimized homopolar type magnetic bearing actuator. 
Lijesh & Hirani15 considered the constraints due to 
bearings geometry as well as losses while optimizing 
an eight-pole radial active magnetic bearing. Zhong et 
al.16 considered actuator mass, power loss and static 
load as the objective functions and included non-
linearities in their AMB design.  

From the above discussion, it follows that most of 
the studies on active magnetic bearings pertain to 
simple rotor systems and issues related to the AMBs 
employed in a coaxial rotor system need more 
attention. Therefore, the primary aim of this paper is 
to develop a rotordynamic model for an unbalanced 
contra-rotating coaxial rotor system with the inner 
rotor supported by AMBs. This work also aims at 
optimization of AMB parameters so as to minimize 
the overall volume, maximize the force slew rate limit 
and control the vibration amplitudes within 10% of 
the air gap for safe operation using a multi-objective 
genetic algorithm (MOGA). The system response and 
hence, vibration amplitudes are obtained using an 
FEM based rotordynamic analysis of the flexible 
coaxial rotor system.  
 

2 Materials and Methods  
 

2.1 AMB Design Equations and Constraints 
Hetero-polar configuration of eight electromagnetic 

(EM) poles (4 pairs) is the most extensively used 
AMB design as shown in Fig. 1. In the following 
subsections, the various design equations and 
constraints used in the present analysis are presented. 
 

2.1.1 AMB Force 
The bearing force produced by an EM pair is 

determined as follows:17 
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The AMB shown in Fig. 1 is so aligned with 
respect to the rotor system that its x and y axes are 
inclined at 45o to the vertical. This ensures equal static 
loads due to rotor weight along both the axes. 
Therefore, equations for only one axis (y-axis) are 
given in the following text. The current in addition to 
the bias current to support the applied load component 
in y direction is expressed as: 
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The above bearing force is linearized using Taylor 
expansion:17 
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2.1.2 Design Constraints 
The various design parameters considered in this 

study should satisfy the following constraints: 
Constraint 1: Stability Constraint 

The force acting on the rotor due to the AMB is 
given by: 
 

AMB i dF K i K x   ... (8) 
 

where, 
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Fig. 1 — Eight-Pole Hetero-polar Active Magnetic Bearing. 
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Constraint 2: Power Supply Voltage Constraint 
The inductance of an EM coil is defined as: 

222 o g
c

A NN
L

I G


   ... (12) 

The bias and control voltages are determined as 
follows: 

   2
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 ... (13) 

Constraint 3: Maximum Current Constraint 

p b cV V V   ... (14) 

The maximum current flow depends on the current 
density of the wire material 

 2
max /4cI d   ... (15) 

where,   is the maximum current density in copper 
wire. 
Constraint 4: Flux Density Constraint 

The flux density in the air-gap is given by:17 
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To avoid saturation of the magnetic material, the 
following constraint must be satisfied: 

c satB B  ... (18) 

Constraint 5: Winding Space Constraint  

r wA A  ... (19) 

where,  
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Constraint 6: Maximum Rotor Response Constraint 

Max  0.1AMBR G  ... (22) 

Constraint 7: Linear Control Current Constraint 

 ,max maxc s p di G k G YG  ... (23) 

Constraint 8: Maximum Sleeve Length Constraint 
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g

m

A
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W
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Constraint 9: Maximum Diameter of Stator Constraint 

  max2 1.1stator p mD d s l W D      ... (25) 

Constraint 10: Pole Width Constraint 

 0.6 0.5 sin 1.5 cosm pW d G    ... (26) 
 

2.1.3 Performance Evaluation 
 

Force Slew Rate Limitation 
The slew rate of the magnetic force is:17 
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Using the above equations: 
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Bearing Volume 

The overall bearing volume is given as 
2

4
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2.1.4 Design-Optimization Algorithm 
The step-by-step procedure for preliminary design 

and optimization of a radial active magnetic bearing 
system is given below: 
a) Estimate the maximum static and dynamic load 

capacity per bearing axis and hence, maxP . 

b) Estimate the maximum current ( maxI ) on the basis 

of Eq. (15) and using it, estimate the number of 
turns ( N ) as follows: 

max
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N
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c) Calculate the required air gap area as follows: 
2
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and 

,max max

1

1ci I



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 ... (33) 

d) Assign suitable values to the design variables mw ,

l , pk and dk . 

e) Calculate the sleeve length as follows: 

g

m

A
b

w
  ... (34) 

f) Using the current values of design variables, 
calculate the objective functions 1f  and 2f , i.e., 
the limiting force slew rate and bearing volume 
from Eqs. (28) and (29) respectively. In this 
optimization problem, it is required to maximize 
the force slew rate and minimize the bearing 
volume. 

g) Calculate the composite normalized objective 
function as follows: 

2,01

1,0 2

ff
f

f f
   ... (35) 

where, f1,0 and f2,0 are the reference values of objective 
functions 1 and 2. This objective function f is 
maximized subject to the design constraints using 
genetic algorithm with penalty based approach. 
 

2.2 Modelling of AMB Coaxial rotor system 
A typical AMBCRS, as shown in Fig. 2(a) consists 

of (i) inner and outer rotors (ii) disks (iii) active 
magnetic bearings (iv) inter-shaft bearing and (v) 
roller bearings. In the present study finite element 
method (FEM) has been incorporated for the dynamic 
analysis of the AMBCRS. Figure 2(b) represents 
discretization of the system under consideration into 
various elements, i.e. disks, rotor and bearings, while 
the local coordinates for the rotor element are shown 
in Fig. 2(c). The governing equation incorporating all 
the elements of a rotor system is given by: 

       
.. . .
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... (36) 

where, [M], [C], [G], and [K] represents global 
matrices of the rotor system and F(t) is the force 
acting on the system. Elements matrices which 
contribute to system global matrices are discussed in 
the following subsections. 
 

2.2.1 Bearing Stiffness and Damping Matrix 
The contribution of bearings to the equation of 

motion is expressed as follows: 
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[ beK ] and [ beC ] are bearing stiffness and  

damping matrices respectively. As inter-shaft  
bearing connects the inner and outer rotors,  
additional elements are introduced in the intershaft 
stiffness and damping matrices. If intershaft bearing  
is located at ‘i’ node of inner rotor and ‘j’ node of 
outer rotor, then intershaft bearing stiffness and 
damping matrices are, 
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and the contribution of intershaft bearing to the 
equation of motion is: 

{ ( )} { ( )} { ( )}is is is is is
be be be be be

d
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Fig. 2(a) — AMB Coaxial rotor system, (b) discretization of AMBCRS, and (c) local coordinates for the rotor element. 
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2.2.2 Disk Element 
Equation of motion for the rigid disk element is 

   
.. .

de deM { ( )} { ( )} { ( )}dede deq t G q t F t   ... (43) 

where,  deM and  deG  are element mass matrix and 

element gyroscopic matrix respectively, which are 
given by:  
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2.2.3 Rotor Elements 
In the present analysis, the rotors are discretized 

using Timoshenko beam elements considering both 
shear as well as rotary inertia effects.18,19  

The equation of motion for Timoshenko beam 
element may be expressed as: 

   
..

se seM { ( )} K { ( )} { ( )}se seseq t q t F t   ... (46) 

where,    se seM and K in Eq. (46) are given in 

Appendix.  
 
2.2.4 Solutions of AMB Coaxial rotor system  

The generalized displacement q(t) in Eq. (36) is  

1 1 1 1 2 2 2 2( ) { , , , , , , , ,................., , , , }n n n nq t u v u v u v       
... (47) 

where, n is the number of degrees of freedom of the 
system. For finding out the damped natural 
frequencies and critical speeds of the AMBCRS, the 
following 2nd order homogeneous differential 
equation needs to be solved:  
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Eq. (48) is solved by reducing it into 2n first order 
differential equation as  
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Eq. (49) in state space form is represented as 
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Eq. (50) is solved by considering the solution of the 
form 

0x (t) stx e  ... (52) 

Substituting Eq. (52) in Eq. (50), and solving for s 
gives the damped natural frequencies of the 
AMBCRS. For finding out the steady-state response 
at nodes of the coaxial rotor system due to the 
unbalanced force acting on any of the rotor disks, Eq. 
(36) is modified as:19 
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.. . .

2
0{ ( )} { ( )} { ( )} { ( )} Re i tM q t C q t G q t K q t b e       

... (53) 

Eq. (53) is solved for finding out the response of 
the unbalanced coaxial rotor system. 
 
3 Results and Discussion 

Force analysis and multi-objective genetic 
algorithm (MOGA) described in Section 2 and 
mathematical model for FEM based rotordynamic 
analysis (FERDA) presented in Section 3 are applied 
here for design, analysis and optimization of an active 
magnetic bearing for the coaxial rotor system shown 
in Fig. 2(a). MATLAB codes have been developed for 
the implementation of both FERDA and MOGA. The 
discretization scheme used here for FERDA is similar 
to that demonstrated by Friswell et al.19. The inner 
and outer rotors are discretized using 7 and 4 
Timoshenko beam elements respectively. Each 
element has 2 nodes and 4 degrees of freedom. Thus 
the system has 52 degrees of freedom in total. The 
location of each node is clearly indicated in Fig. 2(b). 
The values of stiffness and damping coefficient for 
bearings 2 and 3 are listed in Table 1 while the 
dimensions and other properties of the coaxial rotor 
system are given in Table 2. In the present analysis, 
the coaxial rotor system is assumed to be in contra-
rotation with the outer rotor spinning 1.5 times faster 
than the inner one. Furthermore, both the AMBs are 
identical and have equal values of stiffness and 
damping coefficient along x and y axes. In order to 
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distribute the gravitational force (weight of the rotor) 
equally along the two mutually perpendicular load 
axes of the AMB, it is aligned such that both the load 
axes are inclined at 45° to the vertical. Hence, the 
required static load capacity per axis is 87 / 2 62  N. 

The following subsections present the preliminary 
as well as optimum design results along with a 
detailed study on the effects of various input 
parameters on the rotordynamic response of the 
system. 
 

3.1 Preliminary Design of AMB for Coaxial Rotor System 
The six key parameters that govern the 

performance as well as geometry of an AMB system, 
i.e. maximum current, pole width, pole length, 
number of turns, proportional gain and derivative gain 
are considered as design variables. The description 
and preliminary values assigned to these variables are 
given in Table 3. Here the value of maximum current 
(Imax) is estimated using the maximum current density 
( =6×106 A/m2) and cross-sectional area ( 2 /4cd ) of 

copper wire. It may be noted that the value of   used 
here is recommended by designers on the basis of 
thermal considerations.15,17 Similarly, the preliminary 
value of N is calculated on the basis of saturation flux 
density and the value of Imax estimated above. The 
proportional and derivative gains of the PD controller 
are so chosen that the bearing stiffness and damping 
coefficient attain reasonable values (Table 1). The 
representative values assigned to various AMB 
parameters are listed in Table 4. 

Figure 3 presents the Campbell diagram for the 
coaxial rotor system with AMBs as per the 
preliminary design specifications given in Table 3. 
Here the damped natural frequencies of the system are 
plotted as functions of inner rotor speed. The dashed 
lines in Fig. 3 represent the correlation between 
frequency (Hz) and rotational speed (RPM) for inner 
and outer rotors so that the intersection of these lines 

Table 1 — Bearing properties for preliminary AMBCRS 

Bearing kxx (N/m) kyy (N/m) cxx (Ns/m) cyy (Ns/m) Node 
B1 21×106 21×106 1718 1718 1 
B2 17×106 17×106 1200 1200 9 
B3 9×106 9×106 1000 1000 6 and 13 
B4 21×106 21×106 1718 1718 8 

 

Table 2 — Disk dimensions for AMBCRS 

Disk Mass (kg) Id (kg-m2) Ip (kg-m2) Node 
D1 6 0.0301 0.0602 2 
D2 4 0.0149 0.0298 10 
D3 1.8 0.0121 0.0242 12 
D4 3.5 0.0238 0.0476 7 

 

Table 3 — Design Variables 

Design Variable Initial  
Value 

Lower  
Bound 

Upper  
Bound 

No. of turns per pole, N 143 14.3 429 
Maximum current, Imax (A) 3.02 0.302 9.06 
Pole width, wm (mm) 12.0 1.2 36 
Pole length, l, (mm) 10.0 1 30.0 
Proportional gain, kp 15 1.5 45 
Derivative gain, kd 0.0010 0.0001 0.003 

 

Table 4 — AMB Parameters 
Parameter Value 
Static load, 

statP  87/√2 N 

Dynamic to static load ratio,   5.78 

Angular frequency,   600π rad/s 

Maximum current density of copper wire,   6×106 A/m2 

Resistivity of copper wire, ρ 1.72×10-8m 

Diameter of copper wire, cd  0.8 mm 

Maximum voltage across EM circuit, pV  100 V 

Maximum outer diameter of stator, Dmax 150 mm 
Saturation flux density, 

satB  1.2 Tesla 

Air gap size, G 0.5 mm 
Bias indicator, β  6 
Half of angle formed by two poles,   22.5o 
Diameter of inner rotor, 

rotD  40 mm 

Sensor gain, Gs 2000 V/m 
Amplifier gain, Gd 0.8 A/V 
Thickness of the fringes of pole piece, s  1.5 mm 
Air gap to core area ratio, c  1.2 
Maximum sleeve length, bmax 60 mm 

 

 
 

Fig. 3 — Campbell diagram for preliminary AMBCRS. 
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with the natural frequency plots indicates the 
rotational speed at which the frequency of unbalanced 
force equals the natural frequency. It is apparent that, 
within the speed range considered here, the 
unbalanced frequency matches with three backward 
whirl (BW) frequencies at 7617 RPM, 14750 RPM 
and 17517 RPM along with two forward whirl (FW) 
frequencies at 8594 and 15343 RPM. 

In order to visualize the response of the system for 
a typical unbalance of 0.0001 kg-m at the disk D1, 
Fig. 4(a and b) show the variation of vibration 
amplitudes with respect to inner rotor speed at the 
locations of the two AMBs and the four disks 
respectively. These figures reveal two peaks close  
to the rotational speeds corresponding to 1st FW  

and 2nd BW mode as deduced from Fig. 3. It is clear 
from Fig. 4(a) that the first peak crosses the 0.1G 
(=0.05 mm) limit imposed on the maximum 
amplitude for safe operation of the AMBs. Similarly, 
as apparent from Fig. 4(b), the maximum amplitude at 
the location of disk D3 is also quite high. Therefore, 
the AMB parameters have to be tailored in 
accordance with all the constraints as demonstrated in 
the next subsection. 
 

3.2 Optimum Design for Favorable Rotordynamic Response 
For obtaining optimized solution using multi-

objective genetic algorithm (MOGA), the lower and 
upper bounds for each design variable are set as 0.1 
and 3 times their preliminary values respectively. 
Hence, search domain for each design variable lies in 

 
 

Fig. 4 — Response of AMBCRS for initial design variables at (a) AMBs location, and (b) disks location. 
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between their corresponding lower and upper bounds. 
The representative values assigned to various GA 
parameters are listed in Table 5. The results of the GA 
based search for the values of design variables to 
maximize the force slew rate limitation and minimize 
the overall bearing volume subject to various 
constraints are compiled in Table 6. The overall 
bearing volume is found to decrease by 720.02 cm3 

with respect to its preliminary design value. The 
optimization scheme is so implemented that it ensured 
maximum satisfaction of all the constraints. It has 
been achieved at the expense of force slew rate limit 

which is slightly lower than that for preliminary 
design. It may be noted that most of the constraints 
were not satisfied for the case of preliminary design. 

In order to visualize the effectiveness of 
optimization procedure, Fig. 5(a) clearly indicates  

 
 

Fig. 5 — Response of AMBCRS for optimized design variables at (a) AMBs location, and (b) disks location. 

Table 5 — Parameters in Genetic Algorithm 
Parameter Value 
Population size (constant), npopu 120 
Number of generations, ngen 120 
Number of bits in the binary code, nbit 16 
Cross-over probability, pc 1 
Mutation probability (Variable), pm 0 - 0.4 

 

Table 6 — Design Results 

Design Variable Final Value 
No. of turns per pole, N 219 
Maximum current, Imax (A) 2.33 
Pole width, wm (mm) 17.42 
Pole length, l, (mm) 18.19 
Proportional gain, kp, 17.305 
Derivative gain, kd 0.0017 
Sleeve thickness, w (mm) 17.41 
Objective 1: Force slew rate, P̂ (kN/s) 523.4 
Objective 2: Bearing volume, Vbrg (cm3) 717.18 
Diameter of the stator, Dstator (mm) 150.07 
Sleeve length, b (mm) 40.53 
Stator thickness, ts (mm) 17.42 
Maximum copper loss, PCu (W) 9.42 
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that the vibration amplitudes at the location of  
AMBs are reduced to acceptable values, i.e., below 
0.1G (=0.05 mm). Besides, the maximum amplitude 
observed for the case of D3 drops from 0.181 mm 
(Fig. 4(b)) to 0.149 mm (Fig. 5(b)). Also, amplitude 
of vibration at the unbalance disk D1 drops from 
0.121 mm (Fig. 4(b)) to 0.089 mm (Fig. 5(b)). Hence, 
it follows that the stiffness and damping properties of 
an AMB can be easily tailored as per the desired 
rotordynamic behavior by designing its controller and 
actuator accordingly – one of the major advantages of 
AMBs over the conventional bearings.  

Figure 6 shows the Campbell diagram pertaining to 
the optimized AMBCRS. It is found that the damped 
natural frequencies exist in pair for the case of 0 RPM 
due to identical bearing stiffness in x and y directions 
and absence of coupling between two transverse 
planes. Further on comparison with Fig. 3, it follows 
that critical speeds are shifted towards higher rotational 
speed in comparison to the preliminary design.  
 

3.3 Effect of Unbalance on AMB Parameters 
Dynamic load plays a crucial role in the design of 

an AMB and the most common source of 
synchronous dynamic load is the mass unbalance. In 

case, the mass unbalance in a rotor system exceeds 
the design value, the AMB hardware will have to be 
re-designed. Therefore, from a designer's viewpoint, it 
is important to study effects of mass unbalance on 
AMB actuator parameters affecting the hardware 
components of the system, i.e., maximum current, 
pole length, pole width, and number of turns. The 
optimum values of these parameters for four 
magnitudes of mass unbalance are compared in Fig. 7. 

 
 

Fig. 7 — Effect of unbalance on AMB parameters. 

 
 

Fig. 6 — Campbell diagram for optimized AMBCRS. 
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It can be seen that as the unbalance on the disk D1 
increases from 0.0001 kg-m to 0.00025 kg-m, the 
number of turns increases from 219 to 335 while the 
pole width increases from 17 mm to 22 mm. 
Similarly, maximum current also increases from 
2.33A to 4A, however, the pole length remains almost 
unchanged.  
 

4 Conclusion 
Finite element based rotordynamic analysis of 

AMBCRS and optimization of AMB parameters (pole 
width, number of turns, maximum current, pole 
length, proportional gain and derivative gain) using 
multi-objective genetic algorithm (MOGA) have been 
carried out. Based on the results presented in the 
previous section, the following conclusions are 
drawn: 
 The effect of optimization on the dynamic 

response of the unbalanced coaxial rotor system 
has been investigated. With optimized design 
parameters, the maximum amplitude of vibration 
at the locations of the AMBs could be contained 
within 10% of the air gap. Under the present 
conditions, the peak amplitudes at the AMB and 
the disk D3 are found to decrease by 46.9% and 
17.68% respectively. Also, a decrement of 26.5% 
in amplitude at unbalance disk D1 has been 
achieved as a result of optimization.  

 The proportional and derivative gains of the 
controller are found to govern the stiffness and 
damping characteristics of the AMBs. However, 
an arbitrarily designed controller may not ensure 
safe operation of the system. Therefore, a 
systematic optimization procedure like the one 
presented herein is necessary. 

 Mass unbalance is the major source of 
synchronous vibrations in a rotor system. For an 
increase in mass unbalance from 0.0001 kg-m to 
0.00025 kg-m, the optimum values of number of 
turns, pole width and maximum current are  
found to increase by 52.9%, 29.4% and 71.67% 
respectively. Although, pole length remains 
constant throughout possibly because of its 
optimized value and non-violation of constraint 
imposed on the stator diameter and winding space.  

 Touch-down bearings are used in AMB rotor 
systems for the protection of active magnetic 

bearings and other system components during 
failure. This work offers a useful tool for designing 
the touch-down bearings for an AMB system.  

 The maximum current is governed by the 
maximum allowable current density through the 
winding wire and its diameter. Under the present 
operating and geometric conditions, the current 
required to carry the static and dynamic load is 
close to its maximum allowable limit and hence, 
an increase in mass unbalance does not cause any 
noticeable change in its value till 0.0002 kg-m. 
But with further increase in mass unbalance, 
maximum current reaches its saturation condition 
which results in sudden increase in its value. 
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