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Tool chatter is one of such occurrences that limits MRR in a number of industries. In the current research, a method to 
boost output while lowering clatter during turning operations on a CNC lathe has been presented. A microphone is used to 
record the vibration signals generated during turning tests. The denoised signals are analysed using local mean 
decomposition (LMD). Disruptions and undesirable embedded ambient noise are removed using wavelet denoising (WD). 
The product functions that expose chatter information are chosen using these decomposed signals. To recreate the real-time 
chatter, these well-known PFs are used to reconstruct the signal. A consistent range of turning parameters for greater 
productivity has been created using the Grey relational analysis (GRA) prediction technique. The measured Chatter Index 
value has been found to denote steady turning, unstable, and moderate chatter circumstances. In order to confirm the validity 
of the presented methodology, several tests have been conducted. 
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1 Introduction 
Chatter vibrations limit turning productivity and 

machining accuracy1-4. Once the chatter has been 
identified, suppressing it is a difficult undertaking5,6. 
According to some experts, the ideal cutting parameter 
settings can reduce noise. The SLD can be used to 
determine the ideal spindle speed and depth of cut7. 
Many researches ignore the important significance that 
feed rate has in choosing the cutting range. Reducing 
the feed rate and depth of cut, according to some 
researchers, helps lessen chatter8,9. SLD frequently 
lacks proper engineering assistance, making it 
impossible to estimate the ideal cutting range. 

Consequently, a method that can identify the 
beginning of chatter is needed. The microphone is one 
of the sensors that is crucial in the capture of chatter 
signals. In order to collect audio signals during 
milling, researchers have employed microphones10. 
Additionally, it has been claimed that the captured 
chatter signals are distorted by background noise and 
obscure the genuine nature of the chatter features11. 
time-frequency domain analysis12,13, as well as time-
domain analysis14. The methods for detecting chatter 
that are most frequently employed are frequency 
domain analysis15. Huang16 used cutting force 

variation to characterize the cutting stability. Through 
examination of prominent frequencies and energy 
ratios in the face milling operation, chatter 
identification has also been investigated using FFT 
spectrum17. These analyses' peak results are a result of 
chatter frequencies as well as unintentional 
contaminations and background noise. Therefore, it is 
crucial to get rid of these noise components before 
processing the signal to extract features18.  

During the milling of titanium super alloy, some 
researchers applied a chatter detection approach based 
on time series employing the recursive drawing method 
in combination with the Method Huang transform12. 
Wavelet packet decomposition, which served as a 
preprocessor to denoise the acquired signal, is how 
Cao19 suggested measuring stability. Additional 
Hilbert-Huang transform (HHT) applications have 
improved HHT performance. For determining tool 
chatter features, several researchers have used HHT on 
empirical mode decomposition (EMD)20. They have 
demonstrated the efficiency of EMD in locating chatter 
bands, although it carries over the drawback of modal 
aliasing21. Additionally, when Hilbert transformation is 
applied to the findings of EMD decomposition, 
negative instantaneous frequency is more noticeable22 
which has largely been overcome by local mean 
decomposition23, which also produces very good 
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outcomes for identifying and examining chatter 
severity24,25. The decomposition findings of LMD are 
superior to those of EMD26. The LMD approach does, 
however, have some drawbacks. End effect and modal 
aliasing issues are not entirely resolved. The current 
research project was motivated by this. 

Once chatter has been identified, the statistical 
parameter for the chatter index has been assessed for 
chatter feature extraction. Numerous studies demonstrate 
how cutting parameters affected the work material's 
surface quality27. In order to determine the impact of 
cutting parameters on turning operation, Chowdary 
et al.28 investigated Taguchi. Using response surface 
approach, Abhang29 examined surface roughness 
prediction (RSM). GRA has been used to investigate the 
mechanism of drilling and electrochemical discharge 
machining30–32. The previous researcher, however, did 
not use GRA to investigate the elements of chatter-free 
turning at a greater MRR. It was this that inspired the 
current study. Thus, in the current work, CI and MRR 
with regard to input parameters have been optimised 
using grey relational analysis (GRA). 

In the present work single degree of freedom 
vibration system has been considered. The equation 
for (SDOF) forced vibration system is: 
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Where, m=mass, c=damping coefficient and 
k=spring constant 

It has been assumed for the purposes of this 
analysis that the workpiece's surface is smooth prior 
to cutting. After the initial rotation of the workpiece, 
the wavy surface is generated. The second revolution 
causes the generation of wavy surfaces on both the 
inside and outside of the cut (x(t) and x(t-T)), 
Consequently, for stability analysis is the equilibrium 
equation is; 
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Where, 0h =static thickness of chip, ( )h t = 

( ( ) ( )x t T x t  )) is the dynamic thickness of chip, T is 
the time delay and a is the chip width. 

The square and cubic terms33 and power-law 
function for cutting force variation have both been 
taken into account to account for structural 
nonlinearities. Consequently; 
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Apply third degree Taylor series; and considering, 
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x has been expanded as third-order expansion. 
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Depth of cut 2(1 )ca a   ; and by substituting 

the value of 
2

2
, ,

dx d x
a x and

dt dt
from Equation (5) 

into Equation (4) and separating the same powers of 
function, the three delay differential equations are 
obtained; 
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By resolving the equations, it is possible to 
determine how nonlinear factors affect the stability 
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and amplitude response prediction of the system (6, 7 
and 8). The analytical result is a complicated 
equation. The derived complex equation's real and 
fictitious parts are resolved. Finally, the chatter signal 
solution is stated as; 
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The chatter signal in turning operation has been 
simulated using equation (9). Additionally, Equation 
(9) is tampered with zero-mean white noise to mimic
the actual working circumstances shown in Fig. 1.

2 Materials and Methods 
 

2.1 Wavelet denoising technique (WDT) 
The signal's noise makes it difficult to identify the 

chatter frequency precisely. The signal is denoised 
and undesired contaminations are eliminated using 
WDT. It can eliminate contaminants while preserving 
crucial information. The two following processes in 
this strategy are wavelet decomposition and 
thresholding. WDT stpes34: Apply a wavelet 
transform to a noisy signal to obtain noisy wavelet 
coefficients at a level that allows for adequate 
differentiation. Depending on the level and the 
threshold technique, choose the appropriate threshold 
limit. The thresholded wavelet coefficients are 
subjected to an inverse wavelet transform to produce 
a denoised signal. After passing the noisy signal 
through low- and high-pass filters, coefficients are 
then calculated. WDT involves condensing signal 

features into a small number of wavelet coefficients 
of large magnitude and denoising the small value 
coefficients by reducing or eliminating their values 
without compromising the true informative signal. 
Unwanted noise accounts for the lesser coefficients. 
In WDT, choosing the thresholding is a crucial step. 
There are two sorts of thresholding techniques: soft 
thresholding and harsh thresholding. 

Soft thresholding; 
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Where, W is the noisy wavelet coefficient and 

  is the threshold. It is also called wavelet shrinkage,
as values of coefficients shrinked towards zero. 

Hard thresholding; 
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The hard thresholding either retains or discards 
coefficient values. Inverse wavelet transform 
produces the original signals that have been denoised 
after thresholding the coefficients. 

2.2 Local mean decomposition (LMD) 
Smith 23 published the LMD approach. In order to 

derive a time-varying instantaneous phase and 
instantaneous frequency, LMD deconstruct amplitude 
and frequency modulated signals into a limited 
number of product functions, each of which is the 
product of an envelope signal and a frequency 
modulated signal. A demodulated signal time-
frequency representation can be created by plotting 
the instantaneous frequency and envelope values 
together. 

2.3 Processing of the simulated signal with the suggested 
approach (WDLMD) 

First, as shown in Fig. 2, Daubechies (db5) have 
been used along with two level decomposition to filter 

Fig. 1 — Simulated signal. 



INDIAN J ENG MATER SCI, FEBRUARY 2023 106

noise. The stationary detailed coefficients "d1" and 
"d2" are obtained when a signal goes through a high-
pass filter. The achieved value, "a2," denotes the 
approximate coefficient and the lower frequency. 

The original signal components have also been 
restored using the LMD approach, as seen in Fig. 3. It 
is evident from the FFT of PFs that the mode aliasing 
issue has almost been resolved. 

The correlation coefficient for PF1, PF2, and PF3 
is 0.48, 0.69, 0.35, and insignificant for the other 
product functions. Thus, signal reconstruction is 
carried out utilizing the first three PFs. The 
reconstructed signal's correlation coefficient is 0.92. 
The frequency components of the signal without 
mode mixing are then depicted in Fig. 4's FFT of the 
reconstructed signal. Peak chatter frequencies can be 

Fig. 2 — Wavelet denoising. 

Fig. 3 — Product functions and FFTs of denoised signal. 
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readily seen in Fig. 4. As a result, the WDLMD 
approach may process the unprocessed chatter signals 
that contain noise. 

2.4 Extracted features of real time turning experiment 
The manufacturing sector's top priority in the 

current competitive environment is to produce goods 
of exceptional quality at a higher rate of output. In 
turning operations, productivity and material removal 
rate (MRR) are connected. Achieving a higher 
material removal rate can boost the productivity of 
certain manufacturing sectors. Additionally, the input 
process parameters of feed rate, spindle speed, and 
depth of cut all directly affect MRR. Higher these 
numbers, the greater the rate of material removal and, 
thus, the greater the productivity. By choosing a 
suitable range of machining parameters, MRR can be 
increased. 

The surface quality of the end items is also 
influenced by these cutting factors. Therefore, it is 
crucial to consider how these machining parameters 
would affect surface finish when choosing them in 
order to get a greater MRR. Many vibrations are 
generated during the turning process when the tool 
and workpiece are in direct contact. These vibrations 
are referred to as self-excited vibrations or chatter 
vibrations. Chatter has an impact on machine tool 
assembly and production rate in addition to the 
quality of the final product. The researchers have 
demonstrated that the non-monotonic dependence of 
chatter severity on the aforementioned process 
factors. Therefore, it is important and pertinent to 
analyse chatter. Thus, in order to produce superior 
products at a higher material removal rate, a suitable 
range of machining parameters must be chosen. 

3 Results and Discussion 
The studies were conducted using a CNC lathe 

equipped with MTAB XL-TURN after the suggested 
WDLMD approach was validated. Use is made of the 
cutting tool, workpiece Al-6061-T6, and carbide insert 
TTS04. The signal was recorded with an AHUJA AGN-
480 dynamic unidirectional microphone with a sampling 
rate of 0.125 milliseconds. Additionally, data is acquired 
using MATLAB software, and a suggested signal 
processing technique is employed to determine the true 
nature of machining. According to Table 1, the 
experiments are carried out using a full factorial design. 

3.1 WDLMD approach on acquired signals 
Daubechies (db5) wavelet, 4 level decompositions 

have been used. Trial-and-error methods and 
decomposition that is compatible with the raw signal 
are used to choose the mother wavelet db5. The 
responsiveness of the chatter is improved by 
decomposition level 4. Each deconstructed level in 
this work has been subjected to soft thresholding. 
Standard deviation ( ) is to used to test thresholds. 
LMD was furthermore was used to demodulated 
signal. Correlation coefficient has been determined 
from the obtained PFs, and important PFs with built-
in chatter information have been chosen. High 
correlation coefficient conspicuous PFs are used to 
build the reconstructed signal. As a result, it contains 
the most chatter frequency information. As seen in 
Fig. 5, the reconstructed signal of one experiment has 
distinct peaks in the FFT.  

Fig. 4 — FFT of reconstructed signal. 

Fig. 5 — FFT of PFs and reconstructed signal. 

Table 1 — Turning parameters 

S. No. Turning parameters Level 1 Level 2 Level 3

1. d (mm) 0.2 0.3 0.4 
2. n (rpm) 1000 1500 2000 
3. f (mm/min) 30 35 40 
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3.2 Thresholding using Nakagami distribution 
Chatter Index is calculated using the Equation (12), 

where ( )x t  is signal and N sampling size; 

1

1
( ) ( )

N

n

Chatter Index CI x t
N 

  … (12) 

According to Table 2, CI has been assessed for all 
27 experiments. A lower CI value indicates a steady 
turn, while a greater number indicates an unstable 
turn. CI ranges in value from 0.86 at its lowest point 
to 3.73 at its highest. Following CI computation, a 
threshold has been established using the Nakagami 
distribution35, as shown in Equation (13). Hence, PDF 
is calculated using shape parameter ( ) and spread 
parameter ( ) as shown in Equation (13) 
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Only when the shape parameter exceeds 0.5 and 
the spread parameter has a positive value for all 
positive random variables does this distribution fit the 
data. Using Matlab software, the PDF value and 
Nakagami curve are drawn. Fig. 6 displays probability 
density functions (PDF) and confidence intervals (CI) 
v/s experimental number. The spread parameter has a 
value of 5.16 while the shape parameter has a value of 
1.23. It is clear from these measured values for the 
shape and spread parameters that the Nakagami 
distribution holds true in this instance of chatter 

analysis. Further, using m   criterion, the upper and 
lower threshold limits are 3.01 and 1.2, respectively.  

3.3 Metal removal rate (MRR) 

i fW W
MRR

t


  Estimated MRR for all 27 

experiments has been shown in Table 2. 

3.4 Optimization process on variables for lower CI and higher 
MRR using GRA 

Grey Relational Analysis (GRA)32 was used in the 
current work primarily because it is one of the finest 
ways to determine the optimal value because it is based 
on original data, has simple calculations, and is 
uncomplicated. Using data from the Grey System, Grey 
Relational Analysis quantifies and dynamically 
compares the factors. It is utilized to establish the ideal 
relationship between different input parameters and 
output parameters in order to produce the best quality 
attributes. It is frequently used for assessing or 
appraising the effectiveness of a turning operation with 
scant information. The following are the GRA's steps: 

Step 1: Data Pre Processing 
This step normalizes the output parameters MRR 

and CI to a value between 0 and 1. The term "Grey 
relational generation" is another name for this 
normalization process. In this stage, GRA converted 
the original data's linear normalization 

The following normalization applies to MRR, 
where greater is better and CI, where smaller is better: 

Larger the better: 
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Table 2 — Turning parameters 

S. No. Turning parameters Level 1 Level 2 Level 3

1. d (mm) 0.2 0.3 0.4 
2. n (rpm) 1000 1500 2000 
3. f (mm/min) 30 35 40 

Fig. 6 — (a) PDF vs. CI, and (b) CI vs. Experiment number. 
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Equation 14 and 15 has been used to find out the 
normalized value of MRR and CI which is shown in 
Table 3.  

Step 2: Grey relational coefficient (GRC) with Deviation 
sequence 

The deviation sequence ( 0 ( )i k  ) and GRC ( ( )i k
values are; 

0 0( ) ( ) ( )i ik x k x k   … (16) 

min max

0 max

( )
( )i

i

k
k




  

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… (17) 

GRC with deviation sequence for all 27 
experiments has been presented in Table 4. 

Step 3: Ranking with Grey relational grade (GRG) 
The average total of the GRC values is identified as 

the GRG, and it is used to rank the studies. Equation 
18 is employed in the calculation. 
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The peak value of GRG is rank 1 and lowermost value 
of GRG is rank 27 in this work as shown in Table 5.  

For each of the 27 sets of experiments, the calculated 
values of the GRG and the accompanying ranking for 
the various input turning parameters have been 
displayed. This table shows that the pairing with rank 1 
produced the least amount of talk while improving 
MRR. Furthermore, the studies that produced the lowest 
rank, 27, had poor MRR values at higher chatter 
severity. Similar to this, the remaining experimental 
conditions may have been examined to understand the 
MRR and chatter severity. A primary effects plot has 
been created as shown in Fig. 7 in order to investigate 
the impact of input turning parameters on GRG. It is 
clear from this plot that the curve's slope (for cut depth) 
with respect to the horizontal axis is both positive and 
greatest. This shows that the depth of cut has a 
significant influence on both outputs. A modest increase 
in cut depth causes a significant rise in GRG. Therefore, 
for better performance, the depth of cut within the 
range under consideration should be lower. The 
inhomogeneity of the workpiece's material composition 
is what causes chatter. Due to the inhomogeneous nature 

Table 3 — Chatter Index and MRR 

Exp. 
No. 

(d) mm (n) rpm (f) mm/min Chatter
Index (CI) 

MMR  
(mg/sec) 

1 0.2 1000 30 0.86 20
2 0.2 1000 35 0.91 23
3 0.2 1000 40 1.16 29
4 0.2 1500 30 1.13 20
5 0.2 1500 35 1.8 25 
6 0.2 1500 40 1.8 29 
7 0.2 2000 30 2.9 20 
8 0.2 2000 35 3 25 
9 0.2 2000 40 3.23 29
10 0.3 1000 30 0.99 30
11 0.3 1000 35 0.89 35
12 0.3 1000 40 1.13 40
13 0.3 1500 30 1.4 32 
14 0.3 1500 35 1.47 38
15 0.3 1500 40 1.7 40 
16 0.3 2000 30 3.42 32
17 0.3 2000 35 3.45 38
18 0.3 2000 40 3.73 43
19 0.4 1000 30 1.02 43
20 0.4 1000 35 0.93 48
21 0.4 1000 40 1.26 57
22 0.4 1500 30 2.34 40
23 0.4 1500 35 2.43 47
24 0.4 1500 40 2.64 48
25 0.4 2000 30 3.07 43
26 0.4 2000 35 3.14 56
27 0.4 2000 40 3.47 56

Table 4 — Normalization of MRR and CI 

Exp. 
No. 

MMR  
(mg/sec) 

Chatter 
Index (CI) 

Normalized value 
(MMR)   

Normalized 
value (CI)   

1 20 0.86 0.000 1.000 
2 23 0.91 0.081 0.983 
3 29 1.16 0.243 0.895 
4 20 1.13 0.000 0.906 
5 25 1.8 0.135 0.672 
6 29 1.8 0.243 0.672 
7 20 2.9 0.000 0.289 
8 25 3 0.135 0.254 
9 29 3.23 0.243 0.174 

10 30 0.99 0.270 0.955 
11 35 0.89 0.405 0.990 
12 40 1.13 0.541 0.906 
13 32 1.4 0.324 0.812 
14 38 1.47 0.486 0.787 
15 40 1.7 0.541 0.707 
16 32 3.42 0.324 0.108 
17 38 3.45 0.486 0.098 
18 43 3.73 0.622 0.000 
19 43 1.02 0.622 0.944 
20 48 0.93 0.757 0.976 
21 57 1.26 1.000 0.861 
22 40 2.34 0.541 0.484 
23 47 2.43 0.730 0.453 
24 48 2.64 0.757 0.380 
25 43 3.07 0.622 0.230 
26 56 3.14 0.973 0.206 
27 56 3.47 0.973 0.091 

Min 20 0.86 0 0 
Max 57 3.73 1 1 
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of the material, deeper cuts result non uneven tool 
penetration into the workpiece material. 

For the subsequent turning passes, this generates 
scratched surfaces. The tool vibrates violently when it 
moves from one surface to another during these 
repeated turning passes, which is known as tool 
chatter in technical parlance. For rpm, a similar 

tendency has been noted. Additionally, the slope of 
feed rate is nearly parallel to the horizontal axis, 
indicating that feed rate's impact on GRG is not as 
significant. So, in order to obtain better performance, 
a moderate value of feed rate should be chosen. 

As indicated in Table 6, the surface topographies of 
the machine surfaces have been rigorously studied to 

Table 5 — Deviation sequence and GRC 

Exp. No. Deviation 
sequence 
(MRR) 

Deviation 
sequence 

(CI) 

Grey relational 
coefficient 

(MRR) 

Grey relational 
coefficient 

(CI) 

1 1.000 0.000 0.333 1.000 
2 0.919 0.017 0.352 0.966 
3 0.757 0.105 0.398 0.827 
4 1.000 0.094 0.333 0.842 
5 0.865 0.328 0.366 0.604 
6 0.757 0.328 0.398 0.604 
7 1.000 0.711 0.333 0.413 
8 0.865 0.746 0.366 0.401 
9 0.757 0.826 0.398 0.377 

10 0.730 0.045 0.407 0.917 
11 0.595 0.010 0.457 0.980 
12 0.459 0.094 0.521 0.842 
13 0.676 0.188 0.425 0.727 
14 0.514 0.213 0.493 0.702 
15 0.459 0.293 0.521 0.631 
16 0.676 0.892 0.425 0.359 
17 0.514 0.902 0.493 0.357 
18 0.378 1.000 0.569 0.333 
19 0.378 0.056 0.569 0.900 
20 0.243 0.024 0.673 0.953 
21 0.000 0.139 1.000 0.782 
22 0.459 0.516 0.521 0.492 
23 0.270 0.547 0.649 0.478 
24 0.243 0.620 0.673 0.446 
25 0.378 0.770 0.569 0.394 
26 0.027 0.794 0.949 0.386 
27 0.027 0.909 0.949 0.355 

Table 6 — GRG and Rank 

Exp. No. (d) mm (n) rpm (f) mm/min GRG Rank 

1 0.2 1000 30 0.66667 7 
2 0.2 1000 35 0.65936 9 
3 0.2 1000 40 0.61247 11 
4 0.2 1500 30 0.58749 13 
5 0.2 1500 35 0.48527 20 
6 0.2 1500 40 0.50103 19 
7 0.2 2000 30 0.37314 27 
8 0.2 2000 35 0.38387 26 
9 0.2 2000 40 0.38749 25 

10 0.3 1000 30 0.66176 8 
11 0.3 1000 35 0.71816 4 
12 0.3 1000 40 0.68138 5 
13 0.3 1500 30 0.57593 15 
14 0.3 1500 35 0.59752 12 
15 0.3 1500 40 0.57595 14 
16 0.3 2000 30 0.39224 24 
17 0.3 2000 35 0.42493 23 
18 0.3 2000 40 0.45128 22 
19 0.4 1000 30 0.73446 3 
20 0.4 1000 35 0.81311 2 
21 0.4 1000 40 0.89101 1 
22 0.4 1500 30 0.5067 18 
23 0.4 1500 35 0.56333 16 
24 0.4 1500 40 0.55954 17 
25 0.4 2000 30 0.48146 21 
26 0.4 2000 35 0.66749 6 
27 0.4 2000 40 0.65174 10 

 
 

Fig. 7 — Main effects plot for GRG. 
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validate the methodology for identifying the ideal 
process variable that corresponds to lower chatter and 
higher MRR. This table makes it clear that the 
suggested methodology is well suited for choosing the 
best process parameters for lower chatter and higher 
MRR when looking at the surface topographies, 
associated GRG, and rank. Additionally, the validity 
of this methodology is confirmed by comparing the 
MRR and CI values to the threshold limits determined 
by the Nakagami approach (Fig. 6). 
 

4 Conclusion 
The goal of this study is to find a consistent cutting 

range for CNC lathe turning operations that will produce 
a smooth surface finish at greater MRR. The key 
conclusions from this study are outlined as follows: 
a The suggested WDLMD technique can extract the 

information from the chatter signal and remove 
the undesired noise items. 

b FFT as spectrum analysis has been applied on 
reconstructed a signal that transforms the time 
domain signals into the frequency domain signals, 
which is assisting in the identification of the 
chatter frequencies. 

c The chosen output parameter the CI exactly mimics 
chatter severity. Using CI it is easy to distinguish the 
severity of chatter during machining.  

d Stability improves as spindle speed rises. 
However, when the cut gets deeper, dramatic 
chatter is seen. The feed rate has a moderate 
impact on chatter intensity. 

e Nakagami distribution is important for 
determining the upper and lower bounds of 
different chatter domains.  

f Grey relational analysis has capability to optimize 
the process variable in order to minimize one and 
maximize other, that help to figuring out the best 
set of process variables to use in order to get 
lower noise and increased productivity. 

g Validation studies confirmed the value of a 
suggested GRA strategy for reaching the 
aforementioned goals. 
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