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Precise and accurate measurements are essential for reliable experimental investigations and establishments of 
immaculate scientific theories. It has been realized that the measurement observations are always accompanied by certain 
reservations, hence to provide quality measurements, systematic assessment of these uncertainties is of much significance. 
This article attempts to demonstrate the detailed procedure for measurement uncertainty evaluation using Monte Carlo 
Simulation (MCS) technique as per the recommendations of JCGM 101: 2008 using Microsoft Excel. Interestingly, it has 
been perceived that the expanded uncertainty values and histograms acquired using Law of Propagation of Uncertainties 
(LPU) and Monte Carlo Simulation (MCS) are distinctive. 
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1 Introduction 
Metrology is defined as the science of measurement 

and its applications. To understand the measurement 
observations appropriately, computation of associated 
measurement uncertainty is crucial. According to the 
international vocabulary of metrology (VIM), 
measurement uncertainty is defined as “non-negative 
parameter characterizing the dispersion of the quantity 
values being attributed to a measure and, based on the 
information used”1. The measurement uncertainty 
occurrence may be attributed to undefined measure 
and, indistinct approximations, numerous assumptions 
formulated during measurements, significant deviation 
in measurement outcomes, instrument bias, erroneous 
measurement methodologies and environmental 
conditions, hence, the measurement observations are 
recommended to be expressed in a standard manner 
with distinctive quantitative proclamation characterizing 
their degree of accuracy. Measurement uncertainty 
evaluation is comprised of exhaustive statistical analysis 
of measurement observations followed by compendious 
elucidation of the final outcome.  

The conventional method of measurement 
uncertainty evaluation in accordance with Guide to the 
Expression of Uncertainty in Measurement (GUM) is 

known as Law of Propagation of Uncertainties (LPU). 
This approach has been extrapolated from a set of 
approximations to simplify the computations and 
justifies a wide range of models1. In LPU technique, 
the measure and model is expanded as per the Taylor 
series to propagate uncertainties followed by 
simplification of the expression by considering the first 
order term only, however considering the higher order 
terms may enhance the accuracy of measurements. 
This approximation stands conceivable here, as the 
uncertainty values are very small in comparison of the 
corresponding quantities and leads to a general 
expression for propagation of uncertainties. Though, 
the GUM/LPU technique is a well-established and 
authentic approach for measurement uncertainty 
computation, however, there are numerous constraints 
associated with it. The model function used for 
measure and calculation must have inconsequential 
non-linearity, so that the approximation made by 
considering only the first order term of Taylor series in 
LPU method may estimate the uncertainty output 
accurately. The law of propagation of uncertainty 
endorses the central limit theorem; stating that the 
convolution of various distributions results into normal 
distribution, substantiating that the probability 
distribution of measure and is approximately normal 
and can be demonstrated by a t-distribution. However, in 
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several cases, the resultant probability distribution may 
exhibit a skewed nature and does not demonstrate a 
normal distribution necessarily, hence challenging the 
central limit theorem. The LPU technique, after 
calculating the standard uncertainties, follows welch-
Satterthwaite equation for computation of effective 
degree of freedom, required to obtain the expanded 
uncertainty. Additionally, the GUM/LPU methodology 
may not stand valid, if some of the input quantities are 
bigger in comparison of others or when the probability 
distributions of input sources are asymmetric or the 
order of magnitude of the estimated measurand and 
associated uncertainty are nominally indistinguishable. 
In order to surmount expostulations existing with LPU 
method, Monte Carlo Simulation (MCS) technique was 
adopted as an alternative approach for measurement 
uncertainty evaluation2,3. Name of this method was 
embraced form the Monte Carlo Casino in Monaco. 
Monte Carlo Simulation approach is based on a 
computational algorithm, in which repeated random 
sampling is carried out for result computation and is 
preferred when an exact result computation through a 
deterministic algorithm is not achievable. It is an 
extremely flexible method with unlimited analysis 
amplitude and remarkable empirical distribution 
handling capability.  

2 Materials and Methods 

2.1 Method for measurement Uncertainty Evaluation using 
Monte Carlo Simulation Technique 
The general LPU expression has been demonstrated 

by Equation 1.  

𝑢௬ଶ ൌ ∑ ቀడ௙
డ௫௜
ቁ
ଶ

ே
௜ୀଵ 𝑢௫௜

ଶ   ... (1) 

Where, 𝑢௬ represents the combined uncertainty of 
output (Y) and 𝑢௫௜ represents the standard uncertainty 
for ith input quantity.  

The LPU approach follows the route exhibited in 
Fig. 1.  

For measurement uncertainty evaluation, Monte 
Carlo Simulation technique was adopted because it 
can conduct the random sampling from input 
quantities probability distributions4,5, hence, evading 
the need of calculating the first order derivatives or 
sensitivity coefficients and effective degrees of 
freedom. Furthermore, it provides the probability 
distribution of the measured quantity along with its 
graphical representation for determination of coverage 
interval. In Monte Carlo Simulation procedure, 
generation of numerous pseudo random numbers for 
various inputs parameters with explicit probability 
distribution functions stabilizes the measurement 
uncertainty assessment6. The steps adopted in Monte 
Carlo Simulation for measurement uncertainty 
evaluation are exhibited by Fig. 2. In present 
investigation, we consider a hypothetical case for 
measurement uncertainty evaluation using the two 
approaches; LPU and MCS. Various error sources 
contributing towards the measurement uncertainty in 
this suppositional case, have been identified 
and demonstrated in the fishbone diagram shown in 
Fig. 3.  

3 Results and Discussion 
The hypothetical model function for current 

exercise is established in Equation 2, whereas a 

Fig. 1 — LPU approach for measurement uncertainty. 

Fig. 2 — MCS approach for measurement uncertainty evalustion. 

Fig. 3 — Error sources contributing towards measurement
uncertainty. 
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detailed uncertainty budget as per GUM/LPU has 
been presented in Table 1. 

𝑌 ൌ ሺδோ ൈ δ௧ሻ ൅ ሺδெ஺ ൈ δ௎ௌ /δோ௉ሻ ... (2)

Where Y, is Output; δR, Repeatability; δt, Error due 
to temperature deviation; δMA, Error due to 
misalignment; δUS, Error due to uncertainty of 
standard used; δRP, Error due to reproducibility 

Here, the average value of output from 10 repeatable 
measurements is = 87.13 unit, with standard deviation 
0.3 unit.  

The reported measurement result for dimensional 
measurement in case of LPU is = 87.13±1.3 unit.  

Further, the measurement uncertainty evaluation is 
carried out using MCS, in order to obtain more 
reliable outcomes through a set of randomly generated 
numbers with numerically approximated probability 
distribution functions of the measure and. To initiate 
with, the number of Monte Carlo Trials “M” is chosen 
followed by generating random numbers for each 
input quantity according to respective probability 
distribution functions, and repeating this process for 
M times for each input. Using the model function, 
output value is calculated for each input sample 
vector, which has been drawn repeatedly through the 
random number generator7,8. The appropriate random 
distribution of measure and is approximated using 
empirical distribution of “M” output sample vectors. 
The recommended number of trials “M” can be 
acquired using Equation 3. 

𝑀 ൐
ଵ଴ర

ଵି௣
... (3) 

Where, p represents the coverage interval.  
For a coverage interval of 95%, 𝑀=2, 00, 000. 

Hence, to carry out MCS for measurement uncertainty 
evaluation at coverage interval of 95%, the number of 
trials should be at least 2, 00, 000. Each input quantity 
is considered one by one for MCS. 

3.1 Repeatability 

As per the repeatability calculation, the mean 
measured value obtained for this particular investigation 
is = 87.13 unit and the standard deviation= 0.3 unit. 
Steps involved for random number generation for 
repeatability with normal distribution are described 
below: 

i) Open Microsoft office excel
ii) Go to “Data” tab
iii) Select “Random number generation”
iv) For 2, 00, 000 iterations, put suitable number of

variables and number of random numbers to give
an array of 2, 00, 000 random numbers

v) Select the distribution as “Normal”
vi) Put the mean value and standard deviation
vii) Select the output range and press “OK”
viii) Now plot the histogram, by selecting the input

range, bin range, output range and chart output
from array. The histogram for repeatability data is
shown in Fig. 4.

3.2 Error due to temperature variation 

Repeat the steps from i to iv, followed by selecting 
“Uniform” distribution, and range, now select output 
range and press “OK”. We get an array B of 2, 00, 
000 random numbers. The histogram shown in Fig. 5 
can be plotted by following the steps explained above 
(step viii). 

Table 1 — A typical uncertainty budget as per law of propagation of uncertainties 

Sources of Error Limits Probability 
Distribution 

Factor Sensitivity 
coefficient 

Standard 
Uncertainty 

Uncertainty 
contribution (µm) 

Degree of 
freedom 

Repeatability 0.1 Normal 1 1 0.100 0.100 9
Error due to temperature 
variation 

1.1 Rectangular 1.7321 1 0.635 0.635 ∞ 

Reproducibility 0.1 U-shaped 1.4142 1 0.071 0.071 ∞ 
Misalignment 0.1 Triangular 2.4495 1 0.041 0.041 ∞ 
Uncertainty of the standard used 0.01 Normal 2 1 0.005 0.005 ∞ 
Combined uncertainty uc= ±0.65 unit 
Expanded uncertainty at a coverage interval of 95% (k=2) UE = ±1.3 unit 

Fig. 4 — Repeatability histogram. 
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3.3 Reproducibility 
Microsoft excel does not have a direct provision to 

generate random numbers with U-shaped distribution, 
hence there is a need to apply a formula. Repeat the 
steps from i to iv. Select distribution “Uniform”, from -
3.14 to 3.14. We get an array, now here in this case we 
keep minimum value 0.0001 and maximum value 0.1. 
Apply the formula for U-distribution in the first cell and 
continue to obtain the final array containing 2, 00, 000 
random numbers with U-shaped distribution. The 
histogram demonstrated in Fig. 6 can be plotted using 
step viii, discussed previously. 

3.4 Misalignment 
Similar to U-shaped distribution random number 

generation inadequacy, Microsoft excel cannot generate 
random numbers with triangular distribution. Here also 
we repeat the steps from i to iv, followed by selecting 
distribution “Uniform” from 0.0001 to 1 for this 
particular case and obtaining an array. Now keep 
minimum value 0.0001, maximum value 0.1, average 
value 0.05 and apply the formula for triangular 
distribution in the first cell and continue to acquire the 
final array containing 2, 00, 000 random numbers with 
triangular distribution. The histogram exhibited in Fig. 7 
can be plotted following the step viii explained above. 

3.5 Uncertainty of the standard used 
Repeat steps from i to v, put mean value 0.0001 

and standard deviation 0.005 for this particular 

hypothetical case. Select the output range and press 
“OK”. We get an array E of 2, 00, 000 random 
numbers with normal distribution, with histogram 
plotted using step viii, as displayed in Fig.8.  

As per the model function presented by Equation 2, 
we produced Monte Carlo Simulation array E with 2, 
00, 000 random numbers for measurement uncertainty 
evaluation. 10 iterations out of 2, 00, 000 iterations 
are shown in Table 2.  

Next, the average measured value for MCS array E 
for this distinct hypothetical case is computed; 
YAverage= 91.46 unit, whereas the expanded 
uncertainty calculated for MCS array E is Uexp= ±5.08 
unit. Further we calculated measurand values at 95% 
coverage interval using formula; Percentile (MCS 
array, 0.975) for YHigh and Percentile (MCS array, 
0.025) for YLow.  

The measurand histogram plotted by selecting 
input range, bin range, output range and chart output 
from MCS array, is demonstrated in Fig. 9, where 
YHigh and YLow values have been highlighted by 
increased frequencies.  

In this investigation for measurement uncertainty 
evaluation of a typical hypothetical case, through 
Monte Carlo simulation approach, the MCS outcome 
has been noticed in form of a trapezoidal histogram 

Fig. 5 — Histogram for error due to temperature variation. 

Fig. 6 — Reproducibility histogram. 

Fig. 7 — Misalignment histogram. 

Fig. 8 — Histogram for uncertainty of the standard used. 
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(not essentially with normal distribution as in case of 
LPU). The MCS findings are summarized in Table 3. 

4 Conclusion 
In present investigation, a simplified procedure for 

measurement uncertainty evaluation using Monte 
Carlo Simulation approach has been discussed in 
detail using Microsoft Office excel. Input quantities 
with different probability distribution functions have 
been identified and exhibited through an arrow 
diagram, followed by random number generation and 
their consolidation as per the model function. The 
MCS array obtained has been further analysed to 
compute average measured value and expanded 
uncertainty along with output histogram. This is to be 
realized, that the mean measured values and expanded 
measurement uncertainty values attained through LPU 
and MCS approaches are not same in this 
suppositional case. Additionally, it is evident that the 
MCS histogram, obtained for this hypothetical case is 

somewhat trapezoidal, hence does not necessarily 
advocate the central limit theorem for measurand 
probability distribution. 
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Table 2 — Monte Carlo Simulation iterations 

Trials Repeatability Error due to 
temperature variation 

Reproducibility Misalignment Uncertainty of the 
standard used 

Mean Measured 
value (unit) 

Expanded 
uncertainty (unit) 

1 87.12 1.06 0.01 0.015 0.003 93.21 4.78 
2 86.93 1.04 0.0005 0.014 -0.0042 98.05 5.29 
3 86.58 1.09 0.05 0.008 0.007 78.95 4.71 
4 87.34 1.09 0.05 0.010 -0.002 87.60 4.77 
5 86.85 1.04 0.05 0.014 -0.009 81.30 5.84 
6 87.29 1.00 0.01 0.009 0.002 90.69 5.27 
7 87.75 1.01 0.05 0.008 0.003 86.41 4.10 
8 87.00 1.00 0.01 0.014 0.0003 84.66 3.86 
9 87.10 1.05 0.01 0.014 0.002 85.57 5.14 
10 87.99 1.03 0.005 0.015 0.006 77.18 5.26 

Fig. 9 — MCS histogram. 

Table 3 — Monte Carlo Simulation outcomes 

Parameters MCS results

Mean measured value (unit) 91.46 
Expanded uncertainty (unit)  ±5.08 
Low end point (unit) 87.29 
High end point (unit) 95.70 


