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This paper investigates a new alternative approach to handle the tasks allocation problem that associate with numerous 
Long Range (LoRa) nodes in the High-Pressure High-Temperature (HPHT) gas wellhead monitoring service. A Multi-
Agent Reinforcement Learning approach is proposed in this paper to overcome this problem with the Proximal Policy 
Optimization (PPO) is chosen as the policy gradient method. An action space is the spreading factor and other parameters 
such as frequency and transmission power has been kept constant. The reward function for the training process will be 
determined by two parameters which are the acknowledge flag (ACK) and collision between packets. Each node will be 
distributed across a defined disc radius. Each node will be represented as an agent. Each agent will undergo packet 
transmission and the packet will be evaluated according to the reward function. The results show that PPO with Multi Agent 
Reinforcement Learning was able to determine the optimal configuration for each LoRa node. The total reward value 
corresponds to the total number of nodes. Furthermore, since this study also implements the use of CUDA, the training was 
able to done in 200 steps and 45 minutes. 
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Introduction 
High-Pressure High-Temperature (HPHT) gas 

wellhead plays an important role in drilling and 
production1. Its purpose is to serve the suspension 
point and pressure seals for casing strings. During 
production operations, it serves as an attach point for 
a Christmas Tree. In other words, wellhead is one of 
the most important and crucial elements on an oil rig. 
One of the tasks in which the operator on board need 
to complete is evaluation of wellhead loads. During 
drilling or completion phase, the angle of a wellhead 
is crucial as it will affect the operation.  

Monitoring of wellhead as shown in Figure 1 has to 
be completed manually daily and frequently and this has 
created a burden for engineers on board as they have 
another task as well2. An optimum solution would be 
using an Internet of Things (IoT) device such as a laser 
distance measurer with Long Range (LoRa). By 
introducing IoT devices, the main problem faced would 
be power source. There are a lot of choices of power 
source for a typical IoT devices such as battery powered. 
However, for this device to be installed on an offshore 
oil rig there are certain rules that need to be adhere. Due 
to the hazardous environment on the offshore platforms, 
there are many regulations which oil rig workers have to 

follow. One such rule is all electronic plug and devices 
has to be monitored and maintained to a safety standard. 
For instance, all such devices need to be mounted into a 
specialised box with ATEX certification. This special 
engineered box prevents potentially explosive, 
environments of various categories, both gaseous 
(petrochemical mainly) and dusty such as flour mills, 
saw mills and some food processing plants from  
expose to outer environment. In an environment which 
filled with explosive gases, this is crucial for prevention 
and safety measurement. For oil rig operators, they have 
to monitor wellhead everyday although any additional 
job such as monitoring additional electronic devices is 
tiring for them. 

Thus, it would be magnificent if the IoT device to 
be plug-and-play devices and maybe disposable after 
the battery lifespan is over. This would reduce the 
burden for oil rig engineers and increase their work 
efficiency. The challenge that needs to solve would be 
maximize a battery usage on an IoT device. This can 
be done by well design resource allocation. The 
design of such sophisticated system required complex 
computation and testing. Thus, this is where 
Reinforcement Learning can be implemented to find 
the optimum policy for such system3. 



INDIAN J GEO-MAR SCI, VOL 50, NO 11, NOVEMBER 2021 
 
 

898

 
 

Fig. 1 — The structure of the HPHT gas wellhead(ref. 2) 

 

With all the regulations and condition faced on the 
platform, the most satisfactory approach for asset 
monitoring and management services with LoRa 
would be a battery powered. There are many types of 
battery may be implemented in this situation namely 
lithium polymer battery or LiPo battery, nickel–
cadmium battery, dry cell battery and many more. 
Several issues need to be considered in which are cost 
and the safety. First, the device is disposable when its 
lifespan is over. Second, as the device is “disposable”, 
the cost needs to be low. Third, such battery needs to 
meet the safety requirement on board which is less 
likely to be explosive. Thus, a dry cell battery will be 
suitable candidate for this device. 

The device has to be run for a long period of time 
which is one whole day and it would be expected to 
run for at least several months. An IoT device with 
LoRa will have a fixed current consumption with 
corresponding action. The number of nodes and 
intelligent nodes would affect a lot on the system. 
Thus, the number of nodes will be fixed and the 
variable will be the task allocation on each node4. 
Task allocation may be done manually with testing 

and measurement; however, this will take lots of time 
and effort.  
 
Related works 

Due to the increased usage of wireless devices 
nowadays, the research trend is starting to focus on 
wireless devices. There are several types of wireless 
devices and its associated task allocation algorithm 
has been explored to ensure the further optimization 
of battery usage5-9. Figure 2 below summaries the 
recent trend in resource and task allocation algorithm 
and method within the IoT application. 

Recently, a simulator called LoRa-MAB is being 
proposed in order to investigate the performance of 
resource allocation in LoRa WAN through 
simulation5,6. In addition, EXP3 algorithm is used to 
alter autonomously the decision of LoRa end-devices 
towards the most profitable resources (e.g., spreading 
factors, sub-channels). Previously, only several 
simulators are available for simulating a LoRaWAN 
network. The most popular of them is LoRaSim7, 
which utilize a radio propagation model. At the end of 
simulation, it reports the ratio of packet delivery and 
total energy of the network consumed. However, 
these simulators lack some configuration such as 
varying radio setting and physical settings are not 
considered. The manipulative parameters are 
spreading factors, frequency and transmission power.   

Markov Decision Process (MDP) has been applied 
for a low power wide area network applications8. An 
agent operates according to a policy, which was 
expressed as an actionable distribution according to 
each state defined in the MDP. The value function 
was updated using Q-learning while a deep neural 
network has added to define the loss function. 
Moreover, two parameters were to manipulate namely 
spreading factor, transmission power and frequency. 
As a result, there are 90 fixed actions for each node. 
For the reward function, sum of packets received and 
sum of energy consumed were considered. As a 
result, the proposed method is improved about 15 % 
more the ADR. However, the proposed method is 
slow in learning and decrease in throughput.  

A deep Q-learning model or Deep Q-Learning 
Model for Energy-Efficient Edge Scheduling (DQL-
EES) was reported by Zhang et al.9. It was also 
compared with hybrid Dynamic Voltage and 
Frequency Scaling (DVFS) scheduling based on 
reinforcement learning (QL-HDS). Q-value of each 
DVFS technique has been calculated with a deep Q 
learning which consists of a stacked auto-encoder and 
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a Q-leaning model. The auto encoder was used to 
analyze the feature of each input system. The selected 
manipulative parameters are voltage and frequency. 
During the experiments, 20 different tasks were 
initiated and 4 different task sets are being bring about 
from the 20 different tasks. The energy consumption 
for each task set is used as a metric for performance. 
Simulation results on different task sets demonstrated 
that the proposed algorithm which is Deep Q 
Learning could save average 4.2 % energy than 
Conventional Q Learning.   

The previous research also proposed a framework 
called Cooperative Deep Reinforcement Learning 
strategy (TAP CDQL) approach for task allocation 

problem10. They defined three types of agents namely 
Manager: the agent that request help, Participant: the 
agent which accept and perform the task, and the 
Mediator: the agent that assist task. Three states have 
been utilized namely Busy, Committed and Idle. The 
approach was compared with Greedy Distributed 
Allocation Protocol (GDAP). The methods were tested 
with two different settings where the first setting is the 
total number of agents. While, the second setting varies 
from 100 to 200. It proves Deep Q Learning work in 
task allocation problem, however, this paper did not 
fully exploit its ability to handle heterogeneous agent 
types. Furthermore, due to decentralization and 
reallocation features, it still has several deficiencies. 

 
 

Fig. 2 — Knowledge map for task allocation 
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Methodology 
 

Proposed DRL method  
In this section, a proposed method of Multi-agent 

Deep Reinforcement Learning will be briefly 
discussed. A Proximal Policy Optimization or PPO is 
policy-based approach and it is a family of policy 
gradient method where policy is updated explicitly. 
The most commonly used gradient or loss function is 
given by Ben Noureddine et al.10 

𝑔   𝐸  𝛻 𝑙𝑜𝑔 𝜋  𝑎  | 𝑠 𝐴  ... (1) 

where, 𝜋  represents the random or stochastic policy, 
while 𝐴   is an estimator of the advantage function 
according to the timestep 𝑡. Thus, 𝐸 …   shows the 
observed average expectation over a batch of sample. 
In 2015, a trust region strategy has been introduced 
i.e. Trust Region Policy Optimization or TRPO11. 
TRPO uses Kullback-Leibler Divergence in the 
optimization process. Kullback-Leibler Divergence 
ensures the output of the execution from the new 
policy and will not have a big difference as compared 
to the old policy. In other words, the new policy will 
not be diverged and will stay within the “trusted 
region”. PPO simplifies the optimization process by 
defining the probability ratio between the new policy 
and old policy and named as 𝑟 𝜃 . 

𝑟 𝜃   
 

 
 

 
 ... (2) 

From TRPO, the ratio in eqn. 2 can be 
implemented as: 

𝐽 𝜃  𝐸   𝑟 𝜃  𝐴   𝑠,𝑎    ... (3) 

with  

𝐴   𝑠,𝑎 𝑄 𝑠,𝑎 𝑉 𝑠     ... (4) 

where, 𝑄 𝑠, 𝑎  denotes as 𝑄 value and it is a result of 
function approximation between the input features 
and future discounted rewards values, while 𝑉 𝑠  is 
the value function or the goodness of state. The 
difference between these two functions is 𝑄 values 
that take account on the policy, action and state while 
𝑉 𝑠  only considers state.  

In contrast to TRPO, PPO imposes policy ratio, to 
stay within a range of small interval of 1 without 
adding Kullback-Leibler Divergence. The interval is 
defined as in between 1 𝜖 and 1  𝜖 where, 𝜖 is set 
to 0.2 in original PPO paper. The goal of PPO 
function is to obtain the minimum value between 
original value and clipped value.  

𝐽 𝜃  𝐸 𝑚𝑖𝑛  𝑟 𝜃  𝐴   𝑠,𝑎   , 𝑐𝑙𝑖𝑝 𝑟 𝜃 , 1
𝜖, 1  𝜖 𝐴   𝑠,𝑎     ... (5) 

Next, in a complex LoRa network, there will be 
many nodes involved. In this paper, all nodes are 
required to react with each other. This can be done in 
RLlib where, the environment is based on gym 
environment. Each node will be represented by an 
agent and randomly distributed across a defined 
radius5,6. During the training, each agent will first 
configure its settings according to the action decided 
by PPO policy. As shown in Figure 3, each node will 
transmit a LoRa packet with size 50 bytes. In this 

 
 

Fig. 3 — Process flow for proposed DRL in LoRa 
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work, the action space will be the spreading factor 
and each node will be assigned to a different 
spreading factor.  Previous research has showed that 
with optimal configuration, the number of nodes with 
successful transmission may be significantly 
increased12.  

Note that it is important to determine a node with 
optimal configuration by two different values. In 
LoRa node, there will be two parameters to be 
considered for reward or “good action” which are the 
ACK flag and Collision. ACK flag is known as 
acknowledgement. The flag is to determine whether a 
sender node received a message that requires an 
acknowledgement.  

In simpler term, it will check whether a packet has 
been sent13. If the flag is set to 1, it is a successful 
transmission and vice versa. For collision, LoRa packet 
will collide if two or more data are sent at same time. 
Collision of packet can be avoided with varying 
configuration in LoRa13. Any node with specific 
Spreading Factor with packet transmitted with ACK 
flag equal to 1 and have no collision is considered 

“good” action. Each agent will undergo this packet 
transmission and evaluate its reward. The training 
process will run until the defined iteration end. 
 
Results and Discussion 

As depicted in Figure 4, a total of 100 nodes were 
well distributed across 4.5 km radius at oil rigs 
deployment. The setup used for this research work is 
merely a NVIDIA Geforce MX150 with 2GB VRAM. 
This has also showed that with the help of CUDA 
devices, even a low specification GPU may help 
accelerate the training process. 

The environment has run training with the 
following parameters as given in Table 1. The final 
training results are visualized with the help of Tensor 

 
 

Fig. 4 — Distribution of LoRa nodes around wellheads in oil rigs deployment 

Table 1 — Parameters and constants used for training 
Parameters Values 
Area Disc of radius 4.5 km 
Spreading factors 7, 8, 9, 10, 11, 12 
Frequency 868100 Hz 
Transmission power 14 dB 
Number of nodes/agents 100 
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Board. As shown in Figure 5, a total of 20 iterations 
have been run for the training process and it took 
about 45 minutes. The reward against timestep graph 
is plotted and shown (Fig. 5). 

As there are 100 agents or nodes being simulated 
during the training process, the total reward of 100 
should be observed. After over 140 timestep, the 
graph starts to settle and reach the desired 
performance which is 100. Figure 6 shows the reward 
for each agent against timestep. As observed from the 
graph, majority of the agents was able to identify the 
optimal spreading factor and able to reach 100, the 
higher gradient. A number of episodes can only reach 
about 60 for a period between 20 to 100 episodes, 
however, after that point, PPO policy was able to 

determine the optimal configuration and it increased 
to 90 in only 20 steps difference which is 100 to 120. 
 
Conclusion 

A new idea of PPO policy and Multi Agent 
Reinforcement Learning for task allocation in LoRa 
Network is investigated in this paper. It is 
implemented for deployment of sensors nodes in the 
application of gas wellhead monitoring service. With 
the use of CUDA device, the model was able to be 
trained in less than an hour and provided a promising 
result. The proposed method is best used when all the 
LoRa nodes are fixed with parameters such as 
location. This may be further improved in future when 
the location of LoRa nodes can be randomized. 

 
 

Fig. 5 — Iteration Process of DRL 
 

 
 

Fig. 6 — The total reward for each agent against timestep 
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Furthermore, the proposed method may be used in 
other 5G wireless technology such as SigFox. The 
proposed method will be implemented in other 
protocols as Industry 4.0 is introducing more 
protocols in this data driven era. Many of these 
protocols will be used at many places where it may be 
driven by battery. The proposed method will ensure 
that the device can operate for a suitable amount of 
time. For future work, transmission power and 
frequency may be included in the action space as it 
can also affect the performance and energy 
consumption in LoRa node14,15.  
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