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An expression has been formulated to find the values of volume dependence of isochoric heat capacity (CV). It is 
employed on Mg2SiO4. It has been found that isochoric heat capacity decreases strongly with increase in compression or 
pressure. Anharmonicity on CV  for solid under present investigation has been seen above 1500 K under low compression. 
However, at low temperature, for both low and high compression, and at high temperature under high compression, quasi-
harmonic effects are visible. Under high compression, beyond 1200 K the CV increases slowly monotonically with the 

temperature. It attains peak value at/around Debye temperature. With increasing compression, the curves become steeper. At 
high temperatures, CV  under high compressions depart from that estimated by the Dulong-Petit theory.  
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1 Introduction 

The Gruneisen parameter (γ), first introduced by 
Gruneisen

1
, relates thermal and mechanical properties 

of a solid and determines the pressure response of a 
solid to thermal energy. It has been found to be useful 

tool in describing the equation of state and other 

substances in condensed phase and molecular 
vibrations in solids

2,3
. A new interest has been revived 

in the study of the Gruneisen parameter since the work 

of Anderson
4
 who demonstrated its importance in the 

theory of temperature dependence of bulk modulus. 

The Gruneisen parameter (γ) as a measure of 
anharmonicity of molecular vibrations is of present 

interest as it is a very useful parameter in describing 

wide variety of properties in geophysics and condensed 
matter physics. The anharmonicity of various 

parameters can be qualitatively and quantitatively 

described in terms of thermal energy and thermal 

pressure, treated as useful fundamental thermodynamic 

parameters
5
. Then, the Gruneisen parameter (γ) may be 

(CV) treated as a simple ratio of these two basic 

thermodynamic parameters, involving the isochoric 

heat capacity (CV). Isochoric heat capacity (CV) is an 
important thermodynamic parameter to interpret the 

anharmonicity in any solid. The quasi-harmonic and 

anharmonic effects play an important role in condensed 

matter physics and geophysics both at the theoretical 
and experimental levels. Isochoric heat capacity (CV) of 

solids is well explained in terms of the harmonic 

vibrations of the atomic oscillators
6-9

. Anharmonicity in 

the isochoric heat capacity (CV) has been reported
2,3,10

. 
The anharmonicity also causes the existence of soft 

modes which provide the mechanism for displacive 

phase transitions
11

. In quantum crystals, the role of 
anharmonicity is even more important for a reasonable 

description of the crystals
12,13

. Recently, the isochoric 

heat capacity (CV) of several one-dimensional classical 

and quantum potentials was analyzed by Pizarro et 

al.
14

. The isochoric heat capacity (CV) of simple 

harmonic oscillators of two-level, n-level and infinite 

number of levels were investigated in more detail by 
Styer

15
. Depending on mineral, the high temperature 

anharmonic corrections to isochoric heat capacity (CV) 

become significant either near the melting point or 

even at the room temperature
16-20

. 
 

In this paper we examine to discuss the quasi-

harmonic effects and its application. Its application, 

limited to a certain temperature ranges before 

anharmonic effects become non-negligible. The quasi-
harmonicity is a simple yet effective approximation to 

thermodynamics properties of minerals. Its effectiveness 

has become more apparent with the advent of first-
principles phonons

21
. This approximation treats phonons 

as if they did not interact, as a phonon “gas”. The system 

becomes equivalent to a collection of independent 
harmonic oscillators. As is, the statically constrained 

quasiharmonicity is a very effective property to study the 

isochoric heat capacity of solids at low temperatures but 

not at high temperatures where phonon-phonon 
interactions, or anharmonic effects, are important. At 
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high T, such as near-melting temperatures, the 

dynamics of ions is more appropriately treated by 

classical Molecular Dynamics
22

. The Debye 

temperature (θD) is the conventional upper limit of 

applicability of the quasi-harmonicity. When CV at 
some high temperature exceeds Dulong and Petit limit, 

3 pR the solid is said to be anharmonic in behaviour. 

When CV  approaches 3 pR as a limit, the solid is said 
to be quasi-harmonic

23
. In the present paper, we 

formulate the relationship to compute the pressure or 

volume dependence of isochoric heat capacity. 

Mg2SiO4 is used to testify the present model. Mg2SiO4 
has been found to be an important material as well as 

geophysical mineral
24

. It is one of the few materials for 

which sufficient data of its properties are available. The 
wide range of stability in temperature- pressure space 

and the fact that it is regarded as a major component of 

the Earth lower mantle makes Mg2SiO4 as a special 
versatile material for the present investigation. We 

analyse the quasi-harmonic and anharmonic effects in 

isochoric heat capacity of Mg2SiO4. 

 

2 Formulation For Isochoric Heat Capacity 

The Gruneisen parameter ( )γ  is usually defined by 

the relation
25

: 
 

T

V

K V

C

α
γ =   ... (1) 

 

where α KT , V and Cv are respectively the volume 
thermal expansivity, isothermal bulk modulus, 

volume and isochoric heat capacity. 
Using Eq. (1), Stacey and Davis

26
 have given the 

following thermodynamic identity: 
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 ... (2) 

 

where Tδ ,
'

TK and q are respectively the isothermal 

Anderson-Gruneisen parameter, first order pressure 
derivative of isothermal bulk modulus and second 

Gruneisen parameter. All these parameters are defined 

as: 

1 K
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in which TK is the isothermal bulk modulus, defined 

as: 
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Sharma and Sharma
27

 have generalised the isothermal 

Anderson-Gruneisen parameter in the following 
manner: 

( )
m

TTTT
V

V








−+=

∞∞

0
0
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where
0Tδ  and 

∞Tδ are respectively the values of 

isothermal Anderson-Gruneisen parameter at zero and 

at infinite pressure. m is a dimensionless adjustable 
parameter

27
. Srivastava and Sinha

28
 have given the 

following relation for computing compression 

dependence of first order pressure derivative of 

isothermal bulk modulus: 
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where 
'

0K  and 
'

∞K are the values of first order 

pressure derivative of isothermal bulk modulus at zero 

and at infinite pressure. 
Using Eqs (2,6-8) we get: 
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On integration of above equation one can get the 

following equation: 
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where CV o, γo are the values of isochoric heat capacity 

CV and Gruneisen parameter at zero pressure, 
respectively and A and B are temperature dependent 

parameters given by following relations: 
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3 Results and Discussion 

At infinite pressure, i.e., ∞→P  or 0→V , 

Eq.(2) becomes: 
 

''
1

∞∞
+−+= ∞∞ TT CqKδ   ... (13) 

 

Since at infinite pressure, i.e., P → ∞  or 0V → , 

∞q tends to zero
26

 and 
'

∞TC tends to zero
29

, now 

Eq.(13) takes the following form: 
 

1' −= ∞∞
KTδ  ... (14) 

 

Following Thomas-Fermi theory
30-34

, i.e., ' 5 3K∞ = , 

Eq. (14) results 2 3 for 
∞Tδ . The values of 

∞Tδ  for 

both models
24-28 

satisfy the constraint 
'

0
T

Kδ
∞ ∞〈 〈 35

.  

We have proposed a simple method to investigate 

the volume dependence of the isochoric heat capacity 

V
C  at high temperatures of Mg2SiO4 up to volume 

ratio 0.50. We have used the Al'tshuler et al. model
36

 

for computing values of volume dependence of the 

Gruneisen parameter which is given by following 
relationship: 
 

( )
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0

0
V

V
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where β is a parameter suggested by Al'tshuler et al.
36

 

as ( )0 0β γ γ γ ∞= −  and 0γ and ∞γ  are the values of 

Gruneisen parameter at zero pressure and infinite 

pressure, respectively. Many researchers
37-39 

used the 

Al'tshuler et al.
36

 formula for the γ (V) due to its 
simplicity and satisfies the thermodynamic 

constraints, i.e., γ → finite as 0V → . Several 

researchers
40,41

 found 1 2γ ∞ = . Additional theoretical 

studies that give 1 2γ ∞ = include, but are not limited 

to references
42-47

. 

Nevertheless, some researchers assume 

32=∞γ as 0V → 40
. Recently many researchers

33, 35, 

49-51 
also preferred 1 2γ ∞ =  over 2 3γ ∞ = . Thus in the 

present study we have used the value of 21=∞γ . All 

input parameters used in calculations are given in 

Table 1. The presently calculated value of m  are 

found temperature dependent, showing an 
improvement of previous work

27
. The calculated 

values of m  and β are given in Table 1. However, the 

calculated values are limited by the accuracies of 
available input data as cited in Table 1. It may be 

noted that the parameter m is found to decrease 

sharply beyond reference temperature T = 300 K and 

beyond Debye temperature about ( ≈ 763 K) till 1200 

K. However beyond temperature 1200 K it attains a 
constant value. This trend of constancy of m may 

possibly be observed up to the melting temperature. 

However, due to non availability of input data on the 

parameters involved up to the melting temperature, 
this trend may be tested, which requires further 

investigation. Also the calculated values of β in  
Table 1 are found to be temperature dependent, 

increasing with increase temperature. It may be 

interesting to note that the values of β, beyond Debye 
temperature, are found to be almost constant. The 
predicted values of the volume dependence of 

isochoric heat capacity CV through Equation (9) along 

with those values calculated by Cynn et al.
23

 for the 
sake of comparison for a wide range of temperature 

up to 1600 K and volume ratio up to 0.50 are also 

shown in Fig. 1. A close examination of Fig. 1 shows 

that isochoric heat capacity decreases strongly as 
volume ratio decreases. This trend is in qualitative 

agreement with the experimental results of Takayanagi 

et al.
52

 and theoretically agrees with other workers
5,23

. 
Figure 2 shows the plots for isochoric heat capacity 

versus temperature along selected volume ratios. This 

trend is consistent with those  available data on isochoric 

Table 1 — Input parameters used in calculations 
 

T (K) 
0Tδ [24] '

0K [24] 0
γ [24] ( )/

0
C J gK

V
[23] 

   m β 

300 5.94 5.37 1.29 0.83236 2.38 1.63 

400 5.58 5.40 1.21 0.97601 2.24 1.70 

500 5.49 5.44 1.18 1.04818 2.21 1.74 

600 5.48 5.47 1.17 1.09290 2.19 1.75 

700 5.49 5.50 1.16 1.12435 2.14 1.76 

800 5.47 5.54 1.15 1.14795 2.10 1.77 

900 5.46 5.57 1.15 1.16694 1.98 1.77 

1000 5.47 5.60 1.14 1.18315 1.80 1.78 

1100 5.46 5.63 1.14 1.19724 1.66 1.78 

1200 5.49 5.67 1.15 1.20951 1.27 1.77 

1300 5.44 5.70 1.15 1.22051 1.24 1.77 

1400 5.37 5.73 1.15 1.23083 1.24 1.77 

1500 5.38 5.77 1.15 1.24010 1.24 1.77 

1600 5.40 5.80 1.14 1.24895 1.24 1.77 
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Fig. 1 — Isochoric heat capacity (CV) vs V/V0 at different isotherms 
 

 
 

Fig. 2 — Isochoric heat capacity (CV) vs T(K) at different volume ratio 
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heat capacity calculated by Cynn et al.
23

. At low 

temperature under high compression it attains 

maximum value at nearly 800 K and decreases to a 
minimum value at nearly 1200 K, however beyond 

1200 K, it grows slowly monotonically with 

temperature. 

It is interesting to note that CV crosses the Dulong 
and Petit limit at 1500 K indicating anharmonicity 

above 1500 K. The present results are consistent with 

those data calculated by Cynn et al.
23

. The 
anharmonic effects are appreciable at higher 

temperatures since the mean position of the oscillator 

moves away from its equilibrium position. Due to this 

reason, the isochoric heat capacity, volume thermal 
expansivity reflect the anharmonic effects at high 

temperatures. Because intrinsic temperature effects 

are more evident at high temperatures, the quasi-
harmonic effect becomes insignificant above Debye 

temperature θD
53-56

. Anharmonic effect is more visible 
at high temperatures under lower compression. 

However, since quasi-harmonic effects are visible 

below Debye temperature for both low and high 
values of compression, as can be seen in Fig. 2. This 

is in close agreement with earlier studies
5, 54,57,58

 that 

anharmonic effects decrease with pressure or 
compression and quasi-harmonic effects increase with 

pressure or compression. 
 

4 Conclusions 
In the present paper, an expression was formulated 

to study the compression dependence of isochoric 

heat capacity Cv for Mg2SiO4. CV is found to decrease 
with compression strongly along isotherms. 

Anharmonicity on CV for solid under present 

investigation has been seen above 1500 K under low 
compression. However, at low temperature, for both 

low as well as high compression and at high 

temperature, under high compression quasi-harmonic 

effects are evident thereby showing consistency with 
other studies

59
. Above 1200 K under high 

compression, the heat capacity is found to increase 

slowly monotonically with temperature
60

. At high 
temperatures it may be observed that the isochoric 

heat capacity under high compressions departs from 

that estimated by the Dulong-Petit theory. It attains 

peak value at/around Debye temperature (≈ 763 K). 
At low compression, the curves are flat. With 

increasing compression, the curves become steeper. 

For high compression, the curve around the peak 
value is steeper than that for low compression. This 

indicates that the smaller is the value of compression 

greater is the departure of CV from the peak value and 

vice-versa.It is worth mentioning here that above 

Debye temperature, the anharmonicity of molecular 
vibration may be determined primarily from the 

anharmonicity of isochoric heat capacity. This 

suggestion for intermolecular contribution to 

isochoric heat capacity, based on anharmonic effects, 
is in close agreement with the results obtained 

earlier
2,3

 in case of polymers, using thermo-acoustic 

data. However, this requires further investigations. 
Such a study is expected to play a significant role in 

developing further understanding of the influence of 

molecular order, structure and intermolecular 

interactions upon the macroscopic thermodynamic 
and anharmonic properties of substances in the 

condensed phase. 
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