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Santosh Chaudhary* & Mohan Kumar Choudhary 

Department of Mathematics, Malaviya National Institute of Technology, Jaipur 302 017, India 

Received 29 November 2016; accepted 21 June 2017 

An analysis has been presented to describe the effects of viscous dissipation and Joule heating on an unsteady laminar 

two-dimensional flow of a viscous incompressible electrically conducting fluid over a stretching permeable surface in the 

presence of a uniform transverse magnetic field. Similarity solutions for the problem have been formulated and reduced 

nonlinear ordinary differential equations have been solved numerically using fourth order Runge-Kutta method with 

shooting technique. Influences of various parameters, namely, mass transfer parameter, unsteadiness parameter, magnetic 

parameter, Prandtl number and Eckert number on velocity and temperature distributions have been plotted graphically while 

skin-friction coefficient and Nusselt number have been shown numerically. A comparison of the obtained numerical results 

has been made with previously published results for non-magnetic case. 

Keywords: Viscous dissipation, Joule heating, Unsteady flow, Magnetohydrodynamic flow, Stretching surface,  
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1 Introduction 

Owing to the numerous applications in industrial 

manufacturing, modern metallurgical and metal-

working processes such as hot rolling, glass blowing, 

paper production, wire drawing, drawing of plastic 

films, metal spinning, extrusion of plastic sheets, 

liquid composite moulding metal and polymer 

extrusion etc, the study of magnetohydrodynamic 

(MHD) flow of an electrically conducting fluid past a 

heated surface has attracted considerable interest of 

many researchers during the past few decades. 

Sakiadis1 was the first who obtained boundary layer 

flow over a continuous solid surface moving with 

constant speed. Further, Erickson et al.2 extended this 

problem and included the wall suction or blowing and 

investigated its effects on the heat and mass transfer 

in the boundary layer. Crane3 studied the steady two 

dimensional flow caused by a stretching sheet whose 

velocity varies linearly with the distance from a fixed 

point on the sheet, and found the exact solution for the 

flow field. The effects of heat and mass transfer for 

steady and unsteady flow past a stretching sheet have 

been presented by several researchers4-16 in the 

presence of different physical parameters. 

The problem of steady and unsteady laminar flow 

over a permeable surface has long been a major 

subject in heat transfer due to its importance from 

both theoretical and practical viewpoints and has been 

extensively studied. It also has many applications in 

engineering and technological processes, such as 

petroleum industries, ground water flows, extrusion of 

a polymer sheet from a dye and boundary layer 

control. Pursuing the pioneering studies of Beavers 

and Joseph17, the flow over a permeable surface has 

been investigated18-20. Recently, many authors21-24 

studied the flow and heat transfer over permeable 

surface in numerous cases. It has also been reviewed 

in books25-28. 

Fluid properties of various manufacturing 

processes desired for better outcome mainly depend 

on two aspects, one is the rate of stretching and other 

is the cooling liquid used. Sometimes, rapid stretching 

of the surface results in sudden solidification, which 

destroys some expected properties of the outcomes, so 

an extreme care has to given to control the rate of 

stretching. The use of electrically conducting fluid 

and applications of magnetic field can control the rate 

of cooling and the desired properties of the end 

product. The magnetic field has been used in the 

process of purification of molten metal from non-

metallic inclusions. The study of MHD flow for an 

electrically conducting fluid past a heated surface has 

attracted a lot of attention in view of its important 

applications in many engineering problems such as 
—————— 
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plasma studies, foodstuff processing, solidification of 

liquid crystals, cooling of nuclear reactors, exotic 

lubricants and suspension solutions, the boundary 

layer control in aerodynamics, MHD power 

generators, MHD flight and in the field of planetary 

magnetosphere. Andersson29 presented an exact 

analytical solution of the MHD flow of Walters liquid 

B past a stretching sheet. Further, Vajravelu and 

Nayfeh30 studied about hydromagnetic flow of a dusty 

fluid over a stretching surface. Later, several 

researchers31-36 have focussed their attention to the 

various aspects of the problem of heat transfer and 

hydromagnetic flow. Recently, such problems  

have been investigated either analytically or 

numerically by Chaudhary and Kumar37 and 

Olajuwon and Oahimire38.  

Although viscous dissipation and Joule heating 

effects is of utmost importance in the various 

technological processes especially in nuclear physics 

and electronics, these effects are neglected in all 

above studies. Viscous dissipation plays an important 

role in the natural convection flow when the flow 

field is of extreme size or in high gravity, and 

characterized by the Eckert number. On the other 

hand Joule heating plays a vital role in nuclear 

engineering in connection with the cooling of reactors 

and it is characterized by the product of the magnetic 

parameter and the Eckert number in the energy 

equation. In electronics and physics, Joule heating is 

used to increase the temperature of a conductor which 

opposes the electric current passing through it. 

Hossain39 has reported the combine effects of viscous 

dissipation and Joule heating on free convection  

flow with variable plate temperature. Later many 

researchers40-46 presented the influences of viscous 

dissipation and Joule heating on heat transfer 

problems. 

A quick review of literature shows that, in spite of 

numerous studies on the stretching surface and 

permeable surface, the effects of viscous dissipation 

and Joule heating on unsteady hydromagnetic flow 

over stretching permeable surface with uniform wall 

temperature is not yet available. Therefore, the aim of 

present paper is to extend the work of Ishak et al.47 for 

electrically conducting fluid in the presence of a 

uniform transverse magnetic field. 
 

2 Mathematical Model 

Consider an unsteady two dimensional boundary 

layer flow of an incompressible electrically 

conducting fluid over a permeable surface coinciding 

with the plane y = 0, the flow being confined to y > 0 

The x – axis is chosen along the sheet, and a uniform 

magnetic field B0 is imposed along y –axis (Fig. 1). 

The continuous stretching sheet is assumed to have 

the velocity 
1

w

ax
U

ct



 , the transpiration velocity 

through the permeable wall is Vw with injection and 

suction for ±Vw>0 and the temperature 
w w

b
T T U

a
  , 

where a,b and c are constants with 0, 0, 0a b c    

and also 
1

c
t

 , t is the time and T  is the temperature 

of the fluid far away from the sheet. Under  

the boundary layer approximations, the unsteady  

two-dimensional boundary layer equations can be 

written as: 
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subject to the boundary conditions: 
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where u and v are the velocity components in the  

x and y directions, respectively,   is the kinematic 

viscosity, 
e is the electrical conductivity,  is the 

fluid density, T is the temperature of the fluid,   is 

the thermal diffusivity,   is the coefficient of 

viscosity and 
pC
 

is the specific heat at constant 

pressure. 

 
 

Fig. 1 — Flow geometry and coordinate system. 
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Moreover, in the energy Eq. (3), the second and 

third terms on the right hand side signifies the viscous 

dissipation and the Joule heating, respectively. 

 
3 Similarity Transformations 

Using the physical stream function  tyx ,, , 

the continuity Eq. (1) is identically satisfied: 
 

ψ ψ
,u v

y x

 
  
 

  ... (5) 

] 

The mathematical analysis of the problem is 

simplified by introducing the following dimensionless 

coordinates (Ishak et al.47): 
 

 wψ ηxU f  ... (6) 
 

wη
U

y
x

  ... (7) 

 

 wθ η
b

T T U
a

   ... (8) 

 

where  ηf
 
is the dimensionless stream function, η  is 

the similarity variable, y is the coordinate measured 

along normal to the stretching surface and  ηθ
 
is the 

dimensionless temperature. Therefore, using the Eqs 

(5) to (8), the governing boundary layer Eqs (2) and 

(3) can be written in a non-dimensional form as: 
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with the following boundary conditions: 
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where primes denote differentiation with respect to η . 
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   is the mass transfer 

parameter. 

 

4 Numerical Method for Solution 

The numerical solutions of the Eqs (9) and (10) 

along with the boundary conditions (Eq. (11)) are 

solved by converting the boundary value problem 

(BVP) into initial value problem (IVP). Introducing 

the new set of dependent variables 
1321 ,,, pwww  and 

P2, the following simultaneous linear equations of 

first order are obtained: 
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and 
 

21 pp   ... (15) 
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with the boundary conditions: 
 

1 0 2 1

2 1

η 0 : , 1, 1
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w f w p

w p
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  
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where fw 1  and θ1 p . 
 

In order to solve Eqs (14) and (16) subject to the 

boundary conditions Eq. (17) as an IVP, the values for 

 03w  and  02p  are required but no such values are 

given at the boundary. So the suitable estimated 

values for  03w  and  02p  are chosen and the fourth 

order Runge-Kutta method along with shooting 

technique is applied with step size 001.0η   
to 

obtain the solution. Comparing the calculated values 

for 2w  and 1p for various values of different 

parameters at the far field boundary condition 

6η  (say) with the given boundary conditions 

  062 w
 
and   061 p , the values of  03w  and 

 02p  are adjusted from the guess values to give a 
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better approximation for the solution. The process is 

repeated until the results accuracy of the 
610
 as the 

criterion of convergence. 
 

5 Skin Friction and Nusselt Number 

The physical quantities of primary interest are the 

local skin-friction coefficient fC  and the local 

Nusselt number xNu , which are defined as: 
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Using the Eqs (5) to (8), Eqs (18) and (19) are 

converted as: 
 

  f x

1
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2
f C Re    ... (20) 

 

  x

x

θ 0
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6 Computational Results and Discussion 

In order to get clear insight of the physical 

problem, numerical results of velocity  ηf   and 

temperature  ηθ  profiles for various parameters such 

as the mass transfer parameter 
0f , the unsteadiness 

parameter A , the magnetic parameter M , the Prandtl 

number Pr  and the Eckert number Ec are illustrated 

with the help of graphs. Moreover the computations 

of the functions  0f 
 

and  0θ  which are 

proportional to local skin friction coefficient 
fC and 

local Nusselt number xNu , respectively, have been 

carried out through tables. 

Effects of the mass transfer parameter 
0f  on the 

velocity  ηf   and the temperature    profiles have 

been plotted in Figs 2 and 3, respectively, while the 

other parameters are constant. These figures show that 

the velocity and the temperature decrease with the 

increasing values of the mass transfer parameter
0f . 

Practically, applying suction at the boundary surface 

causes to draw some amount of the fluid into the 

surface,   and  consequently  momentum  and  thermal  

 
 

Fig. 2 — Variation of velocity  ηf   with η for several values of 

0f  when 0.1A   and 0.01M  . 

 

 
 

Fig. 3 — Variation of temperature  θ η with η  for several values 

of 0f  when 0.1,A  0.01,M   1.0Pr   and 0.01Ec  . 
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boundary layer thickness get thinner. Thus the actual 

effect of the mass transfer parameter is to make the 

velocity and temperature distribution more uniform 

within the boundary layer. So, it can be effectively 

used for the fast cooling of the sheet.  

The effects of the unsteadiness parameter A  on  

the fluid flow  ηf   and the temperature  ηθ  

distribution have been studied taking other parameters 

constant and the results are represented in Figs 4  

and 5, respectively. It can be observed that there is a 

special point near 2η   called ‘crossing over point’, 

and the velocity and the temperature profiles have 

completely conflicting behaviour before and after that 

point. Further, it is evident that the velocity and the 

temperature decrease faster with the increasing values 

of the unsteadiness parameter A  while the reverse 

phenomenon occurs for 2η  . This is because of the 

thermal  boundary  layer  thickness  rapidly  decreases 

due to increase in unsteadiness before that point  

but ultimately it increases the thickness of  

boundary layer. 

Figures 6 and 7 depict the velocity  ηf   and 

temperature  ηθ  profiles for different values of the 

magnetic parameter M , respectively, keeping other 

parameters constant. From these figures it is evident 

that the velocity decreases with the increasing values 

of the magnetic parameter M  but the reverse is true 

for the temperature distribution. This can be explained 

by the fact that the application of a uniform magnetic 

field normal to the flow direction gives rise to a force 

which acts in the negative direction of flow. This 

 
 

Fig. 4 — Variation of velocity  ηf  with η
 
for several values of

A  when
 0 1.0f   and 0.01M  . 

 
 

Fig. 5 — Variation of temperature  θ η
 

with η  for several 

values of A  when 0 1.0,f  0.01,M   1.0Pr   and 0.01Ec  . 

 

 
 

Fig. 6 — Variation of velocity  ηf   with η  for several values of 

M when
 0 1.0,f   and 0.1,A  . 
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force is known as Lorentz force and it tends to slow 

down the movement of the fluid along the surface and 

increases its temperature. 

The influence of several values of the Prandtl 

number Pr on   the   temperature  ηθ distribution   is 

displayed in Fig. 8 when the other parameters are kept 

constant. It can be seen that the increase in the Prandtl 

number Pr causes the decrease in the temperature 

profile. From a physical point of view, the fluid with a 

higher value of the Prandtl number posses a large heat 

capacity, and hence intensifies the heat transfer while, 

a smaller Prandtl number increases the thermal 

conductivity and therefore heat is able to diffuse away 

from the surface. 

In Fig. 9, the consequences of the variation in the 

Eckert number Ec  on the temperature  ηθ  profiles 

are shown taking other parameters constant. It is 

noticed that the Eckert number Ec  has an increasing 

effect on the temperature profiles. This is a 

consequence of the fact that for higher values of the 

Eckert number, there is significant generation of heat 

due to viscous dissipation near the sheet. Therefore, 

viscous dissipation in a flow through permeable 

surface is beneficial for gaining the temperature. 

Finally, Table 1 shows the effects of the mass 

transfer parameter
0f , the unsteadiness parameter A 

and the  magnetic  parameter   M  on  the  local  skin- 

 
 

Fig. 8 — Variation of temperature  θ η
 

with η  for several 

values of Pr when 
0 1.0,f  0.1,A  0.01,M   and 0.01Ec  . 

 

 
 

Fig. 9 — Variation of temperature  θ η with η  for several values 

of Ec when 0 1.0,f  0.1,A   0.01,M   and 1.0Pr  . 

 
 

Fig. 7 — Variation of temperature  θ η  with η  for several 

values of M when
 0 1.0,f  0.1,A   1.0Pr   and 0.01Ec  . 
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Table 1 — Computed values of  0f   for various  

values of 
0 ,f A  and M . 

0f  A  M  Exact solutions 
Present 

results 

-1.0 0.1 0.01 0.6591449 0.65914 

-0.5 
  

0.8223909 0.82239 

0.0 
  

1.039469 1.03947 

0.5 
  

1.316099 1.31610 

1.0 
  

1.648648 1.64865 

1.0 0.5 0.01 1.75274 1.75274 

 
1.0 

 
1.88033775 1.88034 

 
2.0 

 
2.11780217685 2.11780 

 
3.0 

 
2.330895321488422 2.33090 

1.0 0.1 0.25 1.749477 1.74948 

  
1.00 2.0213458 2.02135 

  
2.25 2.38866246 2.38866 

  
4.00 2.806244989 2.80624 

 

friction coefficient  0f  . It is seen that the local skin 

friction coefficient  0f   decreases with the 

increasing values of the mass transfer parameter
0f , 

the unsteadiness parameter A  and the magnetic 

parameterM, when other parameters kept constant. 

Moreover, it is found that the values of the local skin 

friction coefficient  0f  are always negative for all 

the values of physical parameters mentioned. From 

physical point of view, positive sign of skin friction 

coefficient means the fluid exerts a drag force on the 

surface and negative sign means the opposite. 

The values for the local Nusselt number  0θ  are 

depicted in Table 2 for several values of the mass 

transfer parameter
0f , the unsteadiness parameter A , 

the magnetic parameter M , the Prandtl  number Pr
and the Eckert number Ec . It is noteworthy that the 

local Nusselt number  0θ decreases with the 

increasing values of the mass transfer parameter
0f , 

the unsteadiness parameter A and the Prandtl number 

Pr but an opposite behaviour is noted in case of the 

magnetic parameter M and the Eckert number Ec , 

taking other parameters constant. Further it is quite 

evident that the values of the local Nusselt number 

 0θ are always negative for all the values of physical 

parameters considered. Physically, negative sign of 

Nusselt number implies that there is a heat flow from 

the sheet. 

From Table 3, the values of the local Nusselt 

number are compared with some already published 

works  of  Ali7  and  Ishak  et al.47 in  the  absence   of  

Table 2 — Computed values of  θ 0  for various values  

of 
0 , , ,f A M Pr

 
and Ec . 

0f  A  M  Pr  Ec  Exact solutions 
Present 

results 

-1.0 0.1 0.01 1.0 0.01 0.652202 0.65220 

-0.5 
    

0.814011 0.81401 

0.0 
    

1.029706 1.02971 

0.5 
    

1.305087 1.30509 

1.0 
    

1.636402 1.63640 

1.0 0.5 0.01 1.0 0.01 1.7408 1.74080 

 
1.0 

   
1.86872986 1.86873 

 
2.0 

   
2.10649670829 2.10650 

 
3.0 

   
2.319587414112824 2.31959 

1.0 0.1 0.25 1.0 0.01 1.62098 1.62098 

  
1.00 

  
1.58185 1.58185 

  
2.25 

  
1.534318 1.53432 

  
4.00 

  
1.486899 1.48690 

1.0 0.1 0.01 0.7 0.01 1.221658 1.22166 

   
2.0 

 
2.88804 2.88804 

   
3.0 

 
4.04265 4.04265 

   
5.0 

 
6.23198 6.23198 

1.0 0.1 0.01 1.0 0.50 1.283 1.28300 

    
1.00 0.92238 0.92238 

    
1.50 0.56177 0.56177 

    
2.00 0.20115 0.20115 

 

 

Table 3 — Comparison of  θ 0  for various values of 0 ,f A
 

and Pr  with 0.00M Ec  .
 

0f  A  Pr  Literature7 Literature47 Present 

results 

-1.5 0.0 0.72  0.4570 0.45880 

  1.00  0.5000 0.50027 

0.0 0.0 0.01  0.0197 0.17742 

  0.72 0.8058 0.8086 0.81207 

  1.00 0.9961 1.0000 1.00048 

  3.00 1.9144 1.9237 1.92345 

1.5 0.0 0.72  1.4944 1.49457 

  1.00  2.0000 2.00001 

-1.5 1.0 1.00  0.8095 0.80957 

0.0    1.3205 1.32064 

1.5    2.2224 2.22255 
 

magnetic and electric fields, which validate the 

present results. From the table it can be seen that the 

results are in an excellent agreement with previous 

researchers. 

 
7 Conclusions 

In the present investigation, an unsteady MHD 

flow past a stretching surface with viscous dissipation 

and Joule heating is analyzed. Governing equations 

are converted into non-dimensional by introducing 
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similarity transformations and hence solved by 

Runge-Kutta fourth order method with the help of 

shooting technique. Further, the effects of the various 

pertinent parameters on the velocity, temperature, 

skin friction coefficient and Nusselt number are 

illustrated and discussed. The main observations of 

the present study are as follows: 

(i) The fluid velocity, the thermal boundary layer 

thickness, the surface gradient and the rate of heat 

transfer decrease as the mass transfer parameter 

and the unsteadiness parameter increase while the 

reverse behaviour is noted after the ‘crossing over 

point’ for velocity as well as thermal boundary 

layer thickness for the unsteadiness parameter. 

(ii) In case of increase in the magnetic parameter the 

momentum boundary layer thickness as well as 

the surface gradient decreases while the opposite 

phenomenon occurs for the thermal boundary 

layer thickness and the rate of heat transfer. 

(iii) The thermal boundary layer thickness and the rate 

of heat transfer decrease with the increase in the 

Prandtl number but the effects of the Eckert 

number are quite opposite. 

 

Nomenclature 

a  Positive constant 

A  Unsteadiness parameter 

b  Non-negative constant 

0B  Uniform magnetic field 

c  Stretching rate 

fC  Local skin-friction coefficient 

pC  Specific heat at constant pressure 

Ec  Eckert number 

f  Dimensionless stream function 

0f  
Mass transfer parameter 

M  Magnetic parameter 

xNu  Local Nusselt number 

Pr  Prandtl number 

xRe  Local Reynolds number 

T  Temperature of the fluid 

t  Time 

wT  Surface temperature 

T  Free stream temperature 

wU  Stretching velocity 

u  Velocity component in the x  direction 

v  Velocity component in the y direction 

wV  Transpiration velocity through the permeable wall 

x  Along the stretching surface distance 

y  Normal distance 

 

Greek symbols 
α  Thermal diffusivity 

η  Similarity variable 

θ  Dimensionless temperature 

μ  Coefficient of viscosity 

  Kinematic viscosity 

ρ  Density 

eσ  Electrical conductivity 

ψ  Stream function 
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