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Second law analysis in three-dimensional MHD boundary layer flow and heat transfer of a rotating Casson fluid over a 
stretching surface has been investigated. Such flow problems have relevance in extraction and manufacturing of rubber and 
polymer sheets. Solution of these problems is of great interest as they serve a practical purpose. Partial differential equations 
governing flow and heat transfer have been transformed into non-linear ordinary differential equations by using suitable 
similarity transformations. These non-linear differential equations have been solved numerically by using shooting techniques 
with fourth order Runge-Kutta method. Effects of Casson fluid parameter β, rotation parameter λ, Prandtl number Pr and 
magnetic field parameter M on velocity profile, temperature profile and skin friction number have been analyzed and depicted 
through graphs and tables. Entropy generation number and Bejan number have also been obtained and discussed. 
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1 Introduction 
Flow induced by stretching surfaces has often 

encountered in several engineering and industrial 
processes and therefore its study has many promising 
applications for example in extraction and 
manufacturing of rubber and polymer sheets, wire and 
fiber cutting process, design of various equipment 
used in chemical and food stuff processing. 
Mechanical properties of such products depend on 
rate of heat transfer at the stretching sheet. Initially 
Crane1 examined boundary layer flow expulsion by 
the continuous stretching of a surface in a fixed point. 
Sakiadis2 initiated the effects of boundary layer flow 
past a moving surface. Wang3 extended Crane’s 
problem and examined three- dimensional flow due to 
a stretching flat surface. Verma and Chauhan4 studied 
flow between a torsionally oscillating impermeable 
disc and a stationary naturally permeable disc. Many 
researchers such as Jain5, Fang et al.6, Najar et al.7, 
Mahanta and Shaw8, Jain and Choudhary9, Raju et 
al.10 and Jain and Bohra11 investigated heat transfer 
phenomena on flow over a stretching sheet. Rotating 
fluid flows in boundary layer flows have several 
applications in areas like astrophysical process, 
biomechanics, cosmic fluid dynamics, industrial 
processes, in the design of turbines and rotating heat 
exchangers etc. 

Rotating fluid flows can also be observed at the 
migration of underwater and movement of oil, petrol 
and gas through reservoirs. Wang12 obtained exact 
results for a stretching surface in a rotating fluid. 
Takhar et al.13 studied flow over a stretching surface 
in a rotating fluid with a magnetic field. Zaimi et al.14 
analyzed heat transfer effects of rotating viscoelastic 
fluid in stretching surface. Recently, Mustafa15 and 
Hayat et al.16 also studied the heat transfer effects of 
nanofluids in a rotating systems with MHD. 
 

Second law analysis is basic for many of 
engineering motives for formulating and solving 
convection problems. For example, in the 
development of know how for the heat exchanger 
industry. We strive for improved thermal contact and 
reduced pump power loss in order to improve 
thermodynamic efficiency of a heat exchanger. A 
good heat exchanger means minimum generation of 
entropy. Bejan17 played a very important role to 
investigate the entropy generation effects. The ideas 
of Bejan became a milestone for every researcher. 
Makinde and Osalusi18 studied entropy analysis of 
laminar flow in a filled channel embedded in a 
saturated porous medium. Butt and Ali19 examined 
investigation of entropy generation effects in MHD 
three-dimensional flow and heat transfer of viscous 
fluid over a stretching surface. Recently, 
Freidoonimehr et al.20 and Qing et al.21 investigated 
entropy generation analysis of a MHD Casson fluid 
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over a rotating disk and porous stretching/shrinking 
sheet, respectively. 
 

Several fluids used in industrial and engineering 
process such as geological materials and poly liquid 
foams, exhibit flow properties that are difficult to 
explain by the Newtonian model. One such model is 
the non-Newtonian Casson fluid model which 
symbolizes a shear thinning fluid which is assumed to 
have infinite viscosity at zero rate of shear. This fluid 
behaves like solid elastic and has yield shear stress in 
the consecutive equation for a Casson fluid22. 
Analysis of the Casson and Carreau-Yasuda non-
Newtonian blood models in steady and oscillatory 
flow was discussed by Boyd et al.23 who used the 
lattice Boltzmann method for this purpose. Examples 
of a Casson fluid are jelly, honey, soup and human 
blood. Flow and heat transfer phenomena of a Casson 
fluid having different physical and mathematical 
aspects was analyzed by several researchers such as 
Bhargava et al.24, Attia and Ahmed25 and 
Mukhopadhyay26. Nadeem et al.27 discussed heat 
transfer and MHD boundary layer flow effects of a 
Casson fluid past an exponentially shrinking sheet. 
Bhattacharyya et al.28 studied an analytical solution 
for MHD boundary layer flow of a Casson fluid over 
a stretching/shrinking sheet with wall mass transfer. 
Mukhopadhyay et al.29 discussed Casson fluid flow 
and heat transfer past a symmetric wedge. MHD 
three- dimensional Casson fluid past a porous linearly 
stretching sheet was analyzed by Nadeem et al.30. 
Pramanik31 investigated heat transfer effects of 
Casson fluid flow over an exponentially porous 
stretching surface with thermal radiation. Tufail et 
al.32 studied heat source/sink effects on non-
Newtonian magnetohydrodynamic fluid flow over a 
permeable stretching surface. Sumalatha and 
Bandari33 analyzed heat transfer effects of Casson 
fluid flow over a nonlinear stretching sheet. Several 
authors have studied the Casson fluid model under 
different geometries such as Butt et al.34, Jain and 
Bohra35, Ali et al.36 and Raju et al.37. 
 

The forgoing discussion that deal with a rotating 
Casson fluid with stretching surface are restricted to 
the first law of thermodynamics and, to the best of our 
knowledge, none of them investigated the second law 
of thermodynamics. Recently Butt et al.34 studied of 
flow and heat transfer on a stretching surface in a 
rotating Casson fluid. In this paper we extend the 
work of Butt et al.34 and aim to investigate entropy 
generation of flow and heat transfer over a stretching 

surface under transverse magnetic field, in a rotating 
Casson fluid. 

Governing equations are solved numerically and 
results obtained for pertinent parameters are discussed 
and presented through graphs and tables. 
 
2 Flow Analysis  

Consider steady, three-dimensional, laminar 
incompressible MHD boundary layer flow of a 
rotating Casson fluid over a stretching surface. 
Assume that the surface is stretched in the x- 
direction. The velocity components u, v and w are in 
the direction of the x, y and z axes, respectively, with 
an angular velocity ω in the z direction (Fig. 1). B0 is a 
magnetic field which is applied normal to the surface. 
The Coriolis force is the reason for flow in three 
dimensional MHD boundary layer flow. The fluid 
rotates with angular velocity ω about the z axis. Let 
Tw be the constant temperature of the stretching 
surface and T∞ be the temperature of the fluid far 
away.  

Rheological model that describes Casson fluid is: 
 












cijcyB

cijyB
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ππ,)π2/μ(2
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ep

ep
  … (1) 

 

where τij is the component of the stress tensor, py is the 
yield stress of the fluid, π is the product of the 
component of the deformation rate with itself, πc is a 
critical value of this product based on the non-
Newtonian model and µB is the plastic dynamic 
velocity of the non-Newtonian fluid. 

The governing equations following Butt and Ali19 
are given as: 

Equation of continuity: 
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Fig. 1 — Schematic diagram of the problem. 
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Equation of momentum: 
 

2
2 0

2ω

σ1 1
1

β ρ

u u u
u v w v

x y z

B up
u

x




  
   

  

 
       

  … (3) 

 

2
2 0

2ω

σ1 1
1

ρ β ρ

v v v
u v w u

x y z

B vp
v

y


  
   

  

 
       

 … (4) 

 

2
2 0

1

ρ

σ1
1

β ρ

w w w p
u v w

x y z z

B w
w

   
    

   

 
   

 

  … (5) 

 
 

Equation of energy: 
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Subject to boundary conditions:  
 

ww ,0,0,)( TTwvaxxuu   at 0z

and  TTvu ,0,0  at z  … (7) 
 
 

where a >0 is constant, 
y

cB π2μ
β

p
 is the Casson 

fluid parameter, ν is the kinematic viscosity, k is 
thermal conductivity, Cp is the specific heat of the 
fluid at a constant pressure, ρ is the density and T is 
the temperature of the fluid.  

We introduce the similarity transformation so that 
the continuity equation is identically satisfied. 

We define: 
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Substituting Eq. (8) in Eqs (2-6), Eq. (2) is satisfied 
and Eqs (3, 4, 6) become: 
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is the magnetic field parameter,
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is the local Eckert number. Here η is only function of 
z and it does not depend on x. Hence the Eckert 
number (Ec) does not depend only on the physical 
property but it increases with the square of the 
velocity. 

The corresponding boundary conditions reduced to: 
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0)(θ,0)(,0)('  gf   … (12) 
 

The skin friction coefficients along with x and y 
directions are as follows: 
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where wx and wy are the surface shear stress along the 

x and y directions, respectively, and are defined as:  
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By using Eqs (8) and (14), we get: 
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The local Nusselt number xNu is defined as follows: 
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where w
z 0

T
q k

z

      
is the heat flux. Substituting 

the value of wq in Eq. (16), then the non-dimensional 

of Nusselt number is as follows: 
 

x θ '(0)
x
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Re
   … (17) 

 

3 Numerical Solution 
The boundary value problems given in Eqs (9-11) are 

solved by the forth order Runge-Kutta Shooting method. 
The important steps for this method are as follows: 

Convert the boundary value problem into the initial 
value problem. 

Reduce the system of Eqs (9-11) into a first order system. 
We assume that 1c , 2c and 3c  are the initial guesses 

for )0(''f , )0('g  and ),0('θ respectively. For this we 

consider a finite domain  ηη0 instead of semi-

infinite integration domain 0 η   . where η  has 

been chosen sufficiently large so that solution obtained 
closely approximates the boundary condition. In this 
study we have considered 10η  . The boundary value 

problem is converted into a system of initial value 
problems, as given below: 
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Subject to boundary conditions: 
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4 Entropy Generation 

Bejan17 described the local entropy generation rate 
per unit volume SG for a viscous fluid in the presence 
of magnetic field. Entropy generation equation for a 
Casson fluid is as follows: 
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The first term in Eq. (20) is due to heat transfer. 
The second term is due to fluid friction irreversibility 
and the third terms denote the magnetic field. 

To obtain anon-dimensional form of Eq. (20), we 
define the characteristic entropy generation rate: 
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The non-dimensional entropy generation number is 
as follows: 
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is the dimensionless temperature difference. 
Eq. (22) can be rewritten in the form: 

 

FHmfHS NNNNNN    … (23) 
 

where HN  is entropy generation due to heat transfer,

fN is entropy generation due to fluid friction and 

mN  shows entropy effects due to magnetic field. 

The Bejan number is described as follows:  
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H

NN

N
Be


  … (24) 

 
 

From Eq. (24) it is clear that the range for the 
Bejan number is between 0 and 1. Also when Be= ½ 
the entropy due to heat transfer fluid friction and 
magnetic field entropy are equal. 
 

5 Results and Discussion 
Equations (9-11) subject to boundary condition 

(Eq. (12)) have been solved numerically using Runge-
Kutta fourth order with shooting method.  
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Tables (1-3) show a comparison between present 
results and existing results of Wang12, Najar7 and Butt 
et al.34. It is clearly seen that our results are very well 
in agreement with existing results. It is observed that 
our results are well in agreement with Butt et al.34 for 
particular conditions of our problem. Figures 2 and 3 
show a comparison between our work and Butt et al.34 

for velocity and temperature profiles. 
Figures 4 and 5 show velocity profiles '(η)f and 

(η)g  in the x and y directions for magnetic parameter 
M. An increase in magnetic field reduces the velocity 
component in both the x and y direction of stretching 
surface, due to an increase in Lorentz force, which 
offers greater resistance to the flow, and hence flow 
decelerates. However, in Fig. 6, with an increase in 
magnetic field M, temperature increases. The Casson 
parameter also reduces velocity boundary layer. This 
is due to the introduction of tensile stress. Elasticity 
creates resistance in the fluid flow, and as a result 
velocity decreases. For higher values of Casson fluid 
parameter β, there is a decrease in thickness of the 
momentum boundary layer. However, with increase 
in β, the thermal boundary layer thickness increases. 

Figures 7-9 indicate the effect of the Casson fluid 
parameter β on velocity profile and temperature profile. 

The velocity profiles )η('f and )η(g decrease with 

the increasing values of the Casson fluid parameter  
β. For higher values of β the boundary layer thickness 
decreases. An increase in the Casson fluid parameter β 
the temperature profile )η( increases. In Fig. 9 at a 
particular set of parameters, when magnetic field 
parameter M=0 and Prandtl Number Pr = 20, the 
results obtained are exactly the same as those 
mentioned by Butt et al.34 

Figures 10 and 11 depict the effect of rotation 
parameter λ on velocity profiles '(η)f and (η)g . With an 

Table 3 — Comparison of the values of θ '(0)  when M = 0, Ec= 0 and β .   

 Pr = 0.7 Pr = 2.0 Pr = 7.0 

Wang12 Butt et al.34 Present study   Wang12 Butt et al.34 Present study   Wang12 Butt et al.34 Present study 

0.0 -0.455 -0.454 -0.4539 -0.911 -0.911 -0.9113 -1.894 -1.895 -1.8954 
0.5 -0.390 -0.389 -0.3893 -0.853 -0.852 -0.8524 -1.850 -1.851 -1.8511 
1.0 -0.321 -0.321 -0.3221 -0.770 -0.770 -0.7703 -1.788 -1.788 -1.7876 
2.0 -0.242 -0.242 -0.2481 -0.638 -0.638 -0.6377 -1.664 -1.664 -1.6643 

Table 1 — Comparison of the values of ''(0)f  when M = 0 and 

β .   

 Wang12 Najar et al.7 Butt et al.34 Present Study 

''(0)f  ''(0)f  ''(0)f  ''(0)f  

0.0 -1.0000 -1.0000 -1.0000 -1.000000 
0.5 -1.1384 -1.1384 -1.1384 -1.138389 
1.0 -1.3250 -1.3250 -1.3250 -1.325058 
2.0 -1.6523 -1.6523 -1.6523 -1.652373 

Table 2 — Comparison of the values of '(0)g when M= 0 and 

β .   

 Wang12 Najar et al.7 Butt et al.34 Present Study 

'(0)g  '(0)g  '(0)g  '(0)g  
0.0 0.0000 0.0000 0.0000 0.000000 
0.5 -0.5128 -0.5128 -0.5128 -0.512752 
1.0 -0.8371 -0.8371 -0.8371 -0.837072 
2.0 -1.2873 -1.2873 -1.2873 -1.287236 

 
 

Fig. 2 — Comparison of velocity profile. 
 

 
 

Fig. 3 — Comparison of temperature profile. 
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increase in the value of λ the velocity profile '( )f 
decreases and the boundary layer thickness decreases. 
Similarly for velocity profile (η)g when we increase 

the rotation parameter λ the velocity profile (η)g  

decreases. The results obtained in our investigation 
are well in agreement with Butt et al.34 at a particular 
condition. In  these  figures  for  larger  values of λ the 

 
 

Fig. 4 — Velocity profile of '(η)f  for variation in M when β = 2. 
 

 
 

Fig. 5 — Velocity profile of (η)g  for variation in M when β = 2. 
 

 
 

Fig. 6 — Temperature profile for variation in M when β = 2. 

 
 

Fig. 7 — Velocity profile of '(η)f  for variation in β when M = 2. 
 

 
 

Fig. 8 — Velocity profile of (η)g for variation in β when M = 2. 
 

 

Fig. 9 — Temperature profile for variation in β when M = 2. 
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velocity profile oscillates increasingly, with no oscillation 
for small values of λ. On the other hand Fig. 12 illustrates 
that with an increase in the rotation parameter λ the 
temperature profile θ(η) increases. Hence when we 
increase the rotation parameter λ, the fluid temperature 
rises. Figure 13 exhibits the effect of Prandtl number on 
temperature profileθ(η) . As value of Prandtl number Pr 
increases the temperature profile decreases. 

Figure 14 depicts the effects of magnetic field 
parameter MON Ns, local entropy generation. Figure 14 
shows that the local entropy generation Ns increases 
with increase in magnetic field parameter M. This is 
due to an increase in the Lorentz force. An increment in 
M causes enhancement of the Lorentz force and results 
in more friction which causes an increase in the entropy 
generation. Figures 15-18 show variation of rotation 

parameter λ and group parameter BrΩ-1 on Ns and Be. It 
is observed that increment in both the parameters, 
increases the entropy generation number whereas the 
Bejan number decreases. 

 
 

Fig. 10 — Velocity profile of '(η)f for variation in λ when β = 2. 
 

 

Fig. 11 — Velocity profile of (η)g for variation in λ when β = 2. 

 

Fig. 12 — Temperature profile for variation in λ when β = 2. 
 

 
 

Fig. 13 — Temperature profile for variation in Pr when β = 2. 
 

 
 

Fig. 14 — Entropy effects of Ns for variation in M when β = 2. 
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It is observed that the magnetic field effect and fluid 
friction are prominent near the stretching surface. In the 
region away from stretching surface, entropy due to heat 
surface is prominent. 

Table 4 shows variation of magnetic field parameter 
M, rotation parameter λ and Casson fluid parameter β on 

the skin friction coefficient 1/2
x fxRe C along the x 

direction and 
fy

2/1
x CRe along the y direction. From Table 

4 it is noted that with an increase in magnetic field 
parameter M, the coefficient of skin friction along the x 
direction decreases whereas along the y direction it 
increases. However with an increment in the Casson 
fluid parameter β the skin friction coefficient increases. 
For an increment in the rotation parameter λ, 

fx
2/1

x CRe
decreases. Table 5 shows variation of Nusselt number 
for different values of parameters. Nusselt number 
increases for increasing values of Prandtl number Pr but 
decreases as we increase the Casson fluid parameter  
β, Eckert number Ec, magnetic field parameter M and 
rotation parameter λ. 

 
 

Fig. 15 — Entropy effects of Ns for variation in λ when β = 2. 
 

 
 

Fig. 16 — Entropy effects of Ns for variation in BrΩ-1. 
 

 
 

Fig. 17 — Entropy effects of Be for variation in λ when β = 2. 

 
 

Fig. 18 — Entropy effects of Be for variation in BrΩ-1. 
 

Table 4 — Numerical values of 
1/2
x fxRe C and 

1/2
x fyRe C for 

different values of rotation parameter λ, magnetic field parameter 
M and Casson fluid parameter β. 

 

M β λ 1/2
x fxRe C  

1/2
x fyRe C  

0.0 2.0 0.5 -1.39647 -0.63483 
1.0 2.0 0.5 -1.73205 -0.48028 
2.0 2.0 0.5 -2.12132 -0.37947 
3.0 2.0 0.5 -2.44648 -0.32394 
2.0 2.0 0.5 -2.12132 -0.37947 
2.0 4.0 0.5 -1.93649 -0.34673 
2.0 10 0.5 -1.81659 -0.32550 
2.0 20 0.5 -1.77482 -0.31810 
2.0 2.0 0.5 -2.12132 -0.37947 
2.0 2.0 1.0 -2.43251 -0.75894 
2.0 2.0 5.0 -4.01253 -3.79475 
2.0 2.0 10.0 -9.65421 -7.58948 
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6 Conclusions  
The current study focused on investigation of 

entropy generation for three dimensional MHD 
boundary layer flow and heat transfer due to a 
stretching surface in a rotating Casson fluid. Some 
important results are as follows: 
 

The parallel velocity profiles '(η)f and (η)g  in the 
x and y directions decrease as the Casson fluid 
parameter β and magnetic parameter M increase. 

The velocity profiles '(η)f and (η)g decrease as 
the rotation parameter λ increases. 
 

An increment in the Casson fluid parameter  
β, magnetic field parameter M and rotation parameter 
λ increases the thermal boundary layer thickness. On 
the other hand an increment in Prandtl number  
Pr, decreases the noted in temperature profile. 
 

The local entropy generation number Ns increases 
with increase in magnetic field parameter M, rotation 
parameter λ and group parameter BrΩ-1.On the other 
hand Bejan number Be decreases as the rotation 
parameter λ and group parameter BrΩ-1increase. 
 

For an increase in magnetic field parameter M, the 
coefficient of skin friction along the x direction 
decreases whereas along they direction it increases. 
 

The skin friction coefficients
fx

1/2
x CRe and 

fy
1/2
x CRe

 
in 

the x and y directions increase with the Casson fluid 

parameter β whereas 
fx

1/2
x CRe decreases and fy

1/2
x CRe

increases with magnetic field parameter M. 
Net heat transfer through the flow decreases with the 

increasing value of M. 
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