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The numerical investigation on elastic wave band gap properties in two-dimensional phononic crystal slabs composed 

of periodic cylinders inserted in a homogeneous slab is presented. The cylinders are not connected with the slab directly but 

linked it through some neck structures constituted by part of an annular cylinder. By using the finite element method, the 

band structures of the phononic crystal are analyzed and the geometric parameters of the structure are studied for their 

effects on the band gap properties. Results show that band gaps with low frequencies appear in this structure. The largest 

band gap can be influenced significantly by the geometric parameters of the neck (including the length, the position, the 

central angle and the rotation angle of the neck). Furthermore, the vibration eigenmodes of the structure are calculated to 

reveal the relationship between band gaps and the geometry of the structure. Results show that the occurrence of low 

frequency band gaps are attributed to the coupling effect of swing modes of cylinders and the plate wave modes of the slab 

matrix.  
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1 Introduction  

 In the past years, a new class of functional 

composites, the phononic crystals (PCs), has received 

a lot of interest due to their novel physical properties 

and wide range of potential applications
1-8

. PCs are 

artificial media constituted by a periodical repetition 

of inclusions arranged with various topologies in 

some different host materials
9-11

. The interest in these 

media arises mainly from their possibility of 

exhibiting absolute phononic band gaps (PBGs), i.e., 

frequencies within which the propagation of acoustic 

or elastic waves is forbidden in all directions. This 

surprising property leads the PCs to several potential 

applications such as the design of new acoustic 

devices, noise reduction and vibration isolation in 

high-precision mechanical systems
12-15

. Consequently, 

the study on the PCs has become one of the most 

attractive areas in physics, acoustics and engineering.  

 To meet the needs of PCs in various fields of 

application, the proposal of novel PC structures that 

can yield PBGs in required frequency ranges and the 

investigations on the band gap properties are of great 

importance. In the early years, a lot of researches 

were carried out to design new PCs and study the 

influencing factors of the band gaps
16-21

. Liu et al
22

 

presented a three-component localized resonance PC 

structure constituted by periodic hard cores coated 

with soft material in host material structure. Results 

show that this structure could exhibit band gaps two 

orders of magnitude smaller than the relevant 

wavelength. As the localized resonance mechanism 

(LR) breaks the restriction of the Bragg mechanism 

on the relationship between the lattice constant and 

the wavelength, it insinuates the LRPCs greater value 

in the practical application fields. Thus, more and 

more researches were focused
23-28

on the LRPCs. All 

the novel PCs mentioned above are composed of 

periodic localized resonators placed on the matrix, 

worked as the spring-mass systems. Recently, a two-

dimensional PC structure composed of periodic 

cylinders embedded in a homogenous matrix where 

the cylinders are not connected with the matrix 

directly but through the neck structures is presented
29

. 

The authors investigated the band properties of the 

structure and the influencing factors of the gaps. 

However, the proposed PC in the present paper is 

assumed to be infinite in the z-direction. The band gap 

properties of the PC with finite thickness in the  

z-direction have not been reported yet. In fact, when 

the thickness of the structure is finite, the PC becomes 

a two-dimensional slab and there may be more 

geometrical parameters to modulate the band gaps, 
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which will be very significant for the practical 

application of the PCs. Therefore, studies on PC slabs 

with neck structures will be more interesting.  

 In the present paper, a novel two-dimensional PC 

slab composed of periodic cylinder inclusions 

embedded in a homogenous matrix is numerically 

investigated. The cylinder inclusions are not 

connected directly with the matrix but linked through 

some neck structures constituted by part of an annular 

cylinder. The band gap properties of the PC slab are 

studied and the effects of the geometrical parameters 

on the gap modulation are analyzed in detail. 
 

2 Model and Method 

 As shown in Fig. 1(a), the PC structure considered 

here is a slab with an array of cylinder inclusions 

inserted in it. The cylinder inclusions are not 

contacted with the slab matrix directly but through 

some neck structures constituted by part of an annular 

cylinder. The thickness of the whole structure along 

the z-direction is h and the lattice constant along the 

x- and y-directions is a. In Fig. 1(b), r1 is the outer 

radius of the neck, and r2 is the inner radius of the 

neck meanwhile the radius of the cylinder inclusions. 

The central angle � represents the arc length of the 

neck, and the rotation angle �, the angle between the 

centerline of the neck and the x-axis, describes the 

position of the neck in the vacuum ring between the 

matrix and the cylinder inclusion. In Fig. 1(c), L is the 

length of the neck structure and s is the displacement 

of the neck from the middle cross- section of the slab 

matrix along the z-direction. The whole PC unit cell is 

surrounded by vacuum and extends repeatedly along 

the x- and y-directions.  

 In order to investigate the band gap properties of 

the proposed PC slabs, a series of calculations on the 

dispersion relations and displacement fields of 

eigenmodes are conducted with the finite-element 

method (FEM) based on the Bloch theory29,30
. For the 

propagation of the elastic waves in solid systems, the 

governing equations are given as follows: 
 

23 3 3

2
1 1 1

   ( 1,2,3)k i

ijkl

j l kj l

u u
c i

x x t
ρ

= = =
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= =� �

∂ ∂ ∂� �
� ��   …(1) 

 

where � is the mass density, cijkl the elastic constants, t 

the time, u is the displacement field and xj (j = 1, 2, 3) 

represent the coordinate variables x, y and z, 

respectively. According to the Bloch theory, the 

displacement field in periodic solid system can be 

expressed as: 
 

( ) ( )exp ( ) ,i= ⋅ ku r k r u r   …(2) 

 

where k = (kx, ky) is the wave vector, uk(r) is a 

periodical vector function with the same periodicity as 

the crystal lattice. Based on Eq. (2), only the unit cell 

in Fig. 1(a) needs to be considered during the 

calculations of the dispersion relations since the 

infinite system is periodic along the x- and  

y-directions simultaneously. With the FEM, Bloch 

periodic boundaries are adopted on the two group 

boundaries in xy-plane, written as:  
 

( ) ( )+ exp ( ) ,i= ⋅U r a k r U r  …(3) 

 

where U is the displacement at the nodes, r the 

position vector located at the nodes and a is the vector 

that generates the point lattice associated with the 

PCs. The Bloch wave vector k, delimited in the first 

Brillouin zone of the reciprocal lattice, is adopted to 

describe the related phase relation of a plane wave on 

the boundaries. By varying the value of k in the 

irreducible Brillouin zone and solving the eigenvalue 

problems generated by the FEM algorithm, the 

dispersion relations (i.e., the band structures) as well 

as the displacement fields of eigenmode can be 

obtained.  

 

3 Results and Discussion 
 

3.1 Result of band structure calculation 

 Figure 2 shows the calculated dispersion relations 

for the proposed PC slab composed of periodic steel 

cylinders inserted in the epoxy matrix with steel neck 

 
 

Fig. 1 — Schematic view of the unit cell of the PC slab with neck 

structures (a) the main view (b) the top view and (c) the cutaway 

view along the xz-plane 
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structures. The materials applied in the calculations 

are steel for necks and cylinder inclusions, and rubber 

for the slab matrix, respectively. The elastic 

parameters for them are chosen as follows: the 

Young’s modulus E = 2 GPa, Poisson’s ratio � = 0.4 

and � = 1300 kg/m
3
 for rubber; E = 200 GPa, 

Poisson’s ratio � = 0.33 and � = 7850 kg/m
3
 for steel. 

Meanwhile, the following geometrical parameters are 

adopted: ro = 15 mm, ri = 14 mm, � = 90°, � = 0°, a = 

34 mm, h = 20 mm, L = 20 mm and s =0 mm. The 

filling factor � = 61.12%. It is observed from Fig. 2 

that 11 bands exist in the band structure in the 

frequency range 0-5 kHz, where three complete band 

gaps are involved. The first band gap locates between 

the sixth and seventh band, extending from 2.48 to 

3.61 kHz. The gap width and relative gap width are 

1.13 kHz and 37.11%, respectively. The second gap 

locates between the seventh and eighth band and that 

of the third one is between the ninth and tenth band, 

and their gap widths are much smaller than the first 

gap. The gap width for the second gap is 97 Hz (4.08-

4.177 kHz) and for the third one is 85 Hz (4.535-

4.620 kHz), respectively. Besides, there are two 

incomplete band gaps in the �X direction. The first 

one ranges from 0.85 to 0.975 kHz, with the gap 

width 0.125 kHz, and the second one ranges from 

1.06 to 3.75 kHz with the gap width 2.69 kHz.  

 From the calculation on the band structure of the 

PC slab, it can be seen that the proposed structure can 

yield relative large band gaps in low frequency 

ranges, inferring this type of PC beneficial for 

engineering applications such as the vibration 

isolation and the provision of no-vibration processing 

environment in high-precision mechanical systems. In 

the following, the geometrical parameters of the PC 

structure are investigated for their effects on the band 

gap modulations. As the first band gap is the largest 

one, it is more worthy of being studied. So the 

analysis is mainly focused on the first band gap. 

 
3.2 Effects of the geometrical parameters of the neck structure 

 From Fig. 1 it can be seen that the geometrical 

parameters of the neck structure mainly include the 

central angle �, the rotation angle �, the neck length L 

and the neck displacement along the z-direction s. 

These parameters are sequentially studied for their 

effects on the first band gap. During all these 

calculations, the ro = 15 mm, ri = 14 mm and  

a = 34 mm remain unchanged.  

 Firstly, keeping � = 0°, L = 50 mm and s = 0 mm, 

the influence of the central angle � of the neck on the 

band gap is investigated. Figure 3 shows the evolution 

of the band gap as a function of the central angle 

parameter. The central angle varies from 60 to 300°. It 

can be observed that, with the increase of the central 

angle, both the lower edge (black line with cross 

points) and upper edge (red line with circle points) 

move to a higher frequency range. With the increase 

of the central angle � from 60 to 300°, the lower edge 

raises from 2.13 to 5.025 kHz, and the upper edge 

raises from 2.883 to 8.524 kHz. When � is small, for 

example smaller than 200°, since the increasing ratios 

of the upper edge and lower edge are very similar 

with each other, the gap width of the first band gap 

remains almost unchanged. When � is large enough, 

as the rate of increase of the lower edge trends to be 

flatten while that of the upper edge becomes faster, 

the gap width increases accordingly.  

 Secondly, keeping � = 90°, L= 50 mm and  

s = 0 mm, the effect of the rotation angle on the band 

gap is investigated. Figure 4 shows the evolution of 

 
 

Fig. 2 — Band structure of the PC structure modeled in Fig. 1 

 
 

Fig. 3 — Evolution of the band gap as a function of the central 

angle � with � = 0°, L = 50 mm and s = 0 mm 
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the band gap as a function of the rotation angle 

parameter. It can be seen that, with the increasing of 

the neck rotating from 0 to 45°, the lower edge of the 

band gap moves to the lower frequencies, i.e., from 

2.492 to 1.961 kHz, while the upper edge raises from 

3.712 to 3.974 kHz. The gap width parameter 

modulated is considerable large, which is from 1.22 to 

2.013 kHz. When the angle still increases from 45 to 

90°, it can be observed that the lower edge rises and 

the upper decreases. Obviously, the figure is 

symmetrical with the vertical line corresponding to  

� = 45° as the axis of symmetry. 

 Thirdly, keeping � = 90°, � = 0° and s = 0 mm, the 

effect of the neck length on the band gap is 

investigated. Figure 5 shows the evolution of the band 

gap as a function of the neck length parameter. One 

premise should be noted, the increase of the neck 

length is implemented by extending it on both 

directions of z-axis at the same time. From Fig. 5, it 

can be seen that the effects of the neck length on both 

edges of the gap are very similar with that of the 

central angle (seen in Fig. 3). With the increasing of 

the neck length, both the upper and lower edges of the 

gap rise. However, the amplitude of increase that this 

parameter modulates is much smaller than the central 

angle does, as the lower edge raises from 1.18 to  

2.48 kHz while the upper edge from 1.55 to  

3.61 kHz. It can be concluded that, although this 

parameter cannot modulate the gap width 

significantly, it lowers the starting frequency of band 

gap to some extent, which is beneficial for broadening 

the application of PC in lower frequencies.  

 Finally, keeping � = 90°, � = 0° and L = 10 mm, the 

effect of the neck displacements along the z-direction 

s on the band structure is investigated. The results are 

shown in Fig. 6. Four groups of neck displacement are 

chosen for the calculations: (a) s = 0 mm,  

(b) s = 5 mm, (c) s = 10 mm and (d) s = 15 mm. From 

Fig. 6(a), it can be observed that, ten bands exist in 

the band structure in the frequency range 0-2.5 kHz 

where one complete gap and one incomplete gap are 

involved. The gaps located between the sixth and 

seven bands, extending from 1.436 to 1.761 kHz and 

0.68 to 1.436 kHz, respectively. When the neck 

displacement increases to s = 5 mm, as shown in  

Fig. 5(b), some points on the bands upon the complete 

gap (MY direction) decreases, resulting in the 

shrinking of the gap. As the six bands below the 

complete gap change are small, the original 

incomplete gap remains almost unchanged. Further 

 
Fig. 4 — Evolution of the band gap as a function of the rotation 

angle � with � = 90°, L = 50 mm and s = 0 mm 
 

 
 

Fig. 5 — Evolution of the band gap as a function of the rotation 

angle L with � = 90°, � = 0° and s = 0 mm. 

 
 

Fig. 6 — Band structures with different neck displacements along 

the z-direction s, with � = 90°, � = 0° and L = 10 mm 
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shift the neck to s = 10 mm, it can be observed from 

Fig. 6(c) that the eigenfrequencies of the seventh 

bands along the XM direction decline significantly, 

more than that of eigenfrequencies along the XM 

direction do, causing the complete gap to further 

shrink. Still the incomplete gap remains unchanged as 

the six bands below the complete gap arise no major 

changes. When the neck displacement increases to s = 

15 mm, the complete gap disappears and the 

incomplete gap shrinks. From the analysis above, it 

can be concluded that the neck displacement 

parameter mainly influences the bands at high orders 

while yields little impact on bands at low orders. 
 

3.3 Displacement fields of eigenmodes 

 To better understand the relationship between the 

neck structure and the band gap modulations, the 

displacement fields of eigenmodes of the PC structure 

are calculated. The results are shown in Fig. 7. The 

colour map denotes the magnitude of the total 

displacement vector field. In Fig. 7, mode A belongs 

to the fourth band, B to the fifth, C to the sixth and D 

to the seventh, respectively. From Fig. 7(a) it can be 

seen that, mode A is mainly the oscillation of the 

cylinder inclusion in the xz-plane. As the slab matrix 

is connected with the cylinder through the neck, the 

matrix on the upper right is extruded and the lower 

right compressed. Similarly, the vibration of mode B 

is mainly concentrated at the swing of the cylinder 

inclusion along the yz-plane. Accordingly, shearing 

vibration occurs on the upper and lower slab layers of 

the matrix. Unlike mode A and B, mode C is mainly 

the torsional vibration of the cylinder inclusion, and 

meanwhile causes the slab matrix rotation through the 

neck structure. As this mode corresponds to the lower 

edge of the first band gap, structure changes related 

with it will influence the gap properties. For the 

central angle and the neck length parameters, the 

increase of the parameters will add the contact area of 

the neck and the slab matrix, therefore increase of the 

torsional stiffness of the system, and thus raise the 

lower edge of the band gap. For the rotation angle 

parameter, it can be seen from Fig. 1(a) that both ends 

of the neck locate at the corners of the square unit cell 

where much material gathers. In this case, the torsion 

of the slab matrix that driven by the neck is difficult. 

When � = 45°, the neck is rotated to a corner and both 

ends of it locate at the middle of the side. As material 

at the neck ends is less, the torsion becomes easy and 

the eigenfrequency of the structure declines. For the 

neck displacement parameter, since the modes A, B 

and C are mainly the vibration of the cylinder and 

spread to the slab matrix through the neck, the 

variation of the neck displacement yields little effect 

on the lower order bands as the contact area and 

torsional stiffness seldom change. From the Fig. 7(d) 

it can be found that, mode D, which corresponds to 

the upper edge of the band gap, is mainly the shearing 

vibration of the slab matrix along the z-direction, and 

the cylinder and neck remain almost stationary during 

the process. The increase of the central angle, the 

rotation angle and the neck length will make the 

shearing become difficult and accordingly increase 

the eigenfrequency of the gap edge, causing the upper 

edge of the gap rises, as shown in Figs 3-5. For the 

neck displacement parameter, as the neck moves up 

from the middle of the slab to the surface, the 

decrease of symmetry weakens the constraint on the 

shearing vibration, resulting in the upper edge moves 

to the lower frequencies. 

 

4 Conclusions 

 In the present paper, a novel two-dimensional 

phononic crystal slab composed of periodic cylinders 

inserted in a homogeneous slab is reported and the 

band gap properties are investigated numerically by 

using the FEM. The cylinders are not connected with 

the slab directly but linked it through some neck 

structures constituted by part of an annular cylinder. 

Numerical results show that band gaps with low 

 
 

Fig. 7 — Eigenmode shapes and displacement vector fields of the 

modes marked in Fig. 2: (a) mode A; (b) mode B; (c) mode C;  

(d) mode D 
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frequencies are observed in this PC structure. 

Geometrical parameters of the neck structure such as 

the central angle, the rotation angle, the neck length 

and the neck displacement are studied for their effects 

on the first large band gap. Results show that the 

location and gap width of the band gap can be 

modulated significantly by these geometrical 

parameters. The increase of the central angle and the 

neck length raise both the lower and upper edges of 

the gap and meanwhile enlarge the gap width. The 

increase of the rotation angle raises the upper edge 

while declines the lower edge to some extent. 

However, the increase of the neck displacement 

declines the upper edge and shrinks the gap width. 

Moreover, the analysis on the displacement fields of 

eigenmodes show that these parameters work on the 

band gap by changing the stiffness of the system. The 

study in this paper may be valuable to the design of 

tuning band gaps and isolators in the low-frequency 

range. 
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