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In this paper, we investigate the problem of two-dimensional MHD mixed convection flow over a vertical permeable 
sheet embedded in a porous medium, with partial slip condition at the boundary. The nonlinear coupled boundary-layer 
equations have been transformed using an appropriate similarity transformation and resulting ordinary differential equations 
have been solved by Runge-Kutta fourth order method along with shooting technique. The influence of magnetic parameter 
M, permeability parameter K, buoyancy or mixed convection parameter λ, suction parameter S, slip parameter δ and Prandtl 
number Pr has been studied. It is found that these parameters have essential effects on the features of flow and heat transfer. 
Further, the present solutions are also validated by comparing with the existing solutions.  
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1 Introduction 
The subject of MHD is largely perceived to have 

been initiated by Swedish electrical engineer Hannes 
Alfv𝑒�́�n1 in 1942. Under the influence of magnetic 
field, electrically conducting fluid induces currents. 
This also creates force on the fluid. MHD can be used 
for the control of fluid flow. MHD has been employed 
for many engineering applications in aerodynamic 
heating, electrostatic precipitation, petroleum 
industry, purification of oil and fluid droplets and 
sprays, etc. The confinement of hot plasma is of great 
importance in nuclear fusion devices where vast 
amount of energy is released. The MHD may be used 
for magnetically pinching the hot plasma2. In 
addition, the MHD flow of electrically conducting 
fluid through porous media has been motivated by its 
immense importance and continuing interest in many 
engineering and technological field, for example, soil 
mechanics, petroleum engineering, transpiration 
cooling, food preservation, cosmetic industry blood 
flow and artificial dialysis, etc. 

The flow due to stretching sheet in a porous 
medium is a very important problem in fluid 
dynamics due to its significant applications in 
polymer processing industries, several biological 
processes and many others. In his pioneering work, 

Sakiadis3 developed the flow field due to a flat 
surface, which is moving with a constant velocity in a 
quiescent fluid. Crane4 extended the work of Sakiadis3 
for the two-dimensional problem where the surface 
velocity is proportional to the distance from the flat 
surface. As many natural phenomena and engineering 
problems are worth being subjected to MHD analysis, 
the effect of transverse magnetic field on the laminar 
flow over a stretching surface was studied by Pavlov5. 
Andersson6 then demonstrated that the similarity 
solution derived by Pavlov5 is not only a solution to 
the boundary layer equations, but also represents an 
exact solution to the complete Navier-Stokes 
equations. Liu7 extended Andersson’s results by 
finding the temperature distribution for non-
isothermal stretching sheet, both in the prescribed 
surface temperature and prescribed surface heat flux 
conditions, in which the surface thermal conditions 
are linearly proportional to the distance from the 
origin. Wang8 first studied the natural convection on a 
two-dimensional vertical stretching sheet. The effect 
of suction/blowing at the surface on the flow over 
vertical stretching surface was investigated by 
Vajravelu9 and Gorla and Sidawi10. Chen11 
demonstrated the mixed convection laminar flow 
adjacent to continuously stretching vertical sheet. 
Elbashbeshy and Bazid12 studied the heat transfer 
over a stretching surface in a porous medium, with 
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internal heat generation and suction or injection. 
Cortell13 discussed the flow and heat transfer of a 
fluid in a porous medium over a stretching surface 
with internal heat generation/absorption and 
suction/blowing. Ishak et al.14 analyzed the 
hydromagnetic effects to mixed convection flow near 
vertical stretching sheet, and Mukhopadhyay15 
investigated the effect of thermal radiation on 
unsteady mixed convection flow and heat transfer 
over a porous stretching surface in porous medium. 
The effect of transverse magnetic field on the laminar 
flow over a stretching surface was also studied by 
researchers Chakrabarthi and Gupta16, Chiam17, 
Ghaly18, Raptis19, Muhaimin et al.20, Noor et al.21, Jat 
and Chaudhary22, Jhankal and Kumar23, etc. 

The non-adherence of the fluid to a solid boundary, 
known as velocity slip, is a phenomenon that has been 
observed under certain circumstances. Fluid in micro 
electro mechanical systems encounters the slip at the 
boundary. In the previous investigations, it is assumed 
that the flow field obeys the no-slip condition at the 
boundary. But, this no-slip boundary condition needs 
to be replaced by partial slip boundary condition in 
some practical problems. Beavers and Joseph24 
considered the fluid flow over a permeable wall using 
the slip boundary condition. The effects of slip at the 
boundary on the flow of Newtonian fluid over a 
stretching sheet were studied by Anderson25, Wang26 
and Ariel et al.27 analyzed the flow of a viscoelastic 
fluid over a stretching sheet with partial slip. Ariel28 
also studied the slip effects on the two dimensional 
stagnation point flow of an elastoviscous fluid. 
Bhattacharyya et al.29 showed the slip effects on 
boundary layer mixed convective flow adjacent to a 
vertical permeable stretching sheet in porous medium. 
Mukhopadhyay et al.30 analyzed the effects of 
temperature dependent viscosity on MHD boundary 
layer flow and heat transfer over stretching sheet. 

In the present paper, an attempt is made to analyze 
the two-dimensional laminar MHD mixed convection 
flow over a vertical permeable sheet embedded in a 
porous medium, with partial slip condition at the 
boundary. The governing boundary layer equations 
have been transformed to a two-point boundary value 
problem in similarity variables and the resultant 
problem is solved numerically using the fourth order 
Runge-Kutta method with shooting technique. The 
effects of various governing parameters on the fluid 
velocity and temperature are shown in figures and 
analyzed in detail.  

2 Formulation of the Problem  
Let us consider the steady two-dimensional laminar 

MHD mixed convection flow over a vertical 
permeable sheet embedded in porous media. The fluid 
is an electrically conducting incompressible viscous 
fluid. The flow model and physical coordinate system 
is illustrated in Fig. 1 where x and y are the 
coordinates along and normal to the flat plate. The 
free stream temperature T∞ is constant. 

Using the Boussinesq and boundary layer 
approximation and neglecting the viscous dissipation 
term, the governing equations are:  
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Where u and v are the components of velocity in the x 
and y directions, respectively, ρ is the density; ν is the 
kinematic viscosity; k1 is the permeability of the 
porous medium; σe is the electrical conductivity; B0 is 
the externally imposed magnetic field in y-direction. 
The induced magnetic field effect is neglected for 
small magnetic Reynolds number flow. It is also 
assumed that the external electric field is zero, the 

 
 

Fig. 1 ― Flow model and physical coordinate system. 
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electric field owing the polarization of charges and 
the Hall effect is neglected. g is acceleration due to 
gravity; β is the coefficient of thermal expansion; T is 
the temperature and α is the equivalent thermal 
diffusivity. 

In Eq. (2), the density variation is taken into 
account by the Boussinesq approximation. Also, the 
last term on the right-hand side of Eq. (2) which 
stands for the buoyancy effect on the flow field has ± 
signs. The plus sign denotes buoyancy assisting flow 
(the buoyancy force has a component in the direction 
of the free-stream velocity) whereas the negative sign 
indicates buoyancy opposing flow (the buoyancy 
force component is opposite to the direction of the 
free-stream velocity). The boundary conditions are 
defined as follows: 
 

y = 0: u = ax + L
ப୳

ப୷
, v = v୵, T = T୵(x) = T∞ + Tx  

 

y → ∞: u = 0, T = T∞  … (4)  
 

where 𝑣௪ is the uniform surface mass flux; 𝑎 is a 
positive stretching constant; L denotes the slip length; 
T୵(x) = T∞ + Tx is variable temperature of the sheet 
with 𝑇 is positive. 

The continuity Eq. (2) is satisfied by introducing a 

stream function 𝛹 such that 𝑢 =
డఅ

డ௬
 and 𝑣 = −

డఅ

డ௫
. 

The momentum and energy equations can be 
transformed into the corresponding ordinary nonlinear 
differential equation by the following transformation:  
 

η = yඥa/ν, Ψ = √aνxf(η), T = T∞ + (T୵ − T∞)θ(η)  
 … (5) 
 

Where 𝜂 is the independent similarity variable.  
The transformed non-linear ordinary differential 
equations are: 
 

f ′′′ + ff ′′ − f ′మ − Kf ′ + Mf ′ + λθ = 0 … (6) 
θ′′ + Pr(fθ′ − f ′θ) = 0  … (7) 
 

The boundary conditions are rewritten as follows: 
 

f(0) = S, f ′(0) = 1 + δf ′′, θ(0) = 1, f ′(∞) → 1, θ(∞) → 0   
 … (8) 
 

In the foregoing equations, the primes denote the 
differentiation with respect to η. K =

ν

୩భୟ
 is the 

permeability parameter of the porous medium, 

M = −
σబ

మ

ρୟ
 is the magnetic parameter, λ = ±

ୋ୰౮

ୖୣ౮
మ is the 

buoyancy or mixed convection parameter with λ>0 
and λ<0 corresponding to assisting flow and opposing 

flow, respectively, Gr୶ = gβ(T୵ − T∞)xଷ νଶ⁄  is the 
local Grashof number, Re୶ = axଶ ν⁄  is the local 
Reynolds number, Pr =

μ

α
 is the Prandtl number, 

S = − v୵ √aν ⁄  ; S>0 is corresponding to suction and 
S<0 is corresponding to blowing parameter, and 

δ = Lඥa ν⁄  is the slip parameter.  
 
3 Results and Discussion 

The system of governing Eqs (6) and (7) together 
with the boundary condition (8) is non-linear ordinary 
differential equations depending on the various 
values of the permeability parameter K, the magnetic 
parameter M, the buoyancy or mixed convection 
parameter λ, the suction parameter S, the slip 
parameter δ, and the Prandtl number Pr. The system 
of Eqs (6) and (7) is solved by Runge-Kutta fourth 
order scheme with a systematic guessing of by the 
shooting technique until the boundary conditions at 
infinity are satisfied. The step size Δη = 0.01 is used 
while obtaining the numerical solution and accuracy 
up to the seventh decimal place, i.e., 1 × 10−4, which 
is very sufficient for convergence. The computations 
were done by a programme which uses a symbolic 
and computer language Matlab. In order to verify the 
accuracy of our present method, we have compared 
our results with those of Andersson25 and 
Bhattacharyya et al.29 Table 1 compares the values of 
the skin friction coefficient f ′′(0) for various values of 
the slip parameter δ with M = 0, K = 0, λ = 0, S = 0 
and Pr = 1. The comparisons are found to be in good 
agreement. The impacts of the magnetic parameter  
M on the velocity and temperature profiles are very 
significant in practical point of view. Figure 2 exhibits 

Table 1 — Numerical values of skin friction coefficient 𝑓 ′′(0) for 
various values of the slip parameter δ with M = 0, K = 0, λ = 0, S 

= 0 and Pr = 1. 

 
δ 

𝑓ᇱᇱ(0) 

Andersson25 Bhattacharyya  
et al.29 

Present  
study 

0.0 -1.0000 -1.00000 -1.000000 
0.1 -0.8721 -0.872083 -0.872810 
0.2 -0.7764 -0.776377 -0.777100 
0.5 -0.5912 -0.591195 -0.591900 
1.0 -0.4302 -0.430160 -0.430900 
2.0 -0.2840 -0.283980 -0.284650 
5.0 -0.1448 -0.144840 -0.145300 
10.0 -0.0812 -0.081242 -0.081570 
20.0 -0.0438 -0.043789 -0.043980 
50.0 -0.0186 -0.0118597 -0.018676 

100.0 -0.0095 -0.009551 -0.009581 
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the effect of magnetic parameter M on the velocity 
profiles. The velocity profiles increase with increasing 
values of M. Accordingly, the thickness of momentum 
boundary layer decreases.  This  happens  due  to  the 
Lorentz force arising from the interaction of magnetic 
and electric fields during the motion of the electrically 
conducting fluid. To reduce momentum boundary 
layer thickness the generated Lorentz force enhances 
the fluid motion in the boundary layer region. On the 
other hand, Fig. 3 depicts the effect of magnetic 
parameter M on the temperature profiles. The 
temperature profiles increases with increasing values 
of magnetic parameter M. Figures 4 and 5 show the 
effect of permeability parameter K on the velocity and 
temperature profiles, respectively. It is obvious that 
the presence of porous medium causes higher 
restriction to the fluid flow, which in turn slows its 
motion. Therefore, with increasing permeability 
parameter, the resistance to fluid motion increases and 
hence velocity decreases. For temperature profiles, it 
is obvious that the presence of porous medium 
reduced the temperature distribution. Thus, the 
thermal boundary layer thickness increases as 
permeability parameter increases.  

Figures 6 and 7 show the effect of the buoyancy or 
mixed convection parameter λ on velocity and 
temperature profiles. It is noted that for increasing 
value of λ, the velocity increases. This phenomenon 
corresponds with the assumption of pure Darcy flow. 
Whereas increasing the λ decreases the thermal 
boundary layer thickness. This is because the 
increasing the λ increases the velocity near the 
surface. The high velocity near the surface carries 
more heat out of the surface, thus decreases the 
thermal boundary layer thickness. These buoyancy 
effects on the velocity profiles and the temperature 
profiles are very important for the physical and 
practical points of view. 

 
 

Fig. 3 — Temperature profiles for various values of M when K= 

0.5,  = 0.07, S = 0.5, δ = 0.1, Pr =1. 
 

 
 

Fig. 4 — Velocity profiles for various values of K when M=0.5, 

 = 0.07, S = 0.5, δ = 0.1, Pr = 1. 
 

 
 

Fig. 5 ― Temperature profiles for various values of K when 

M=0.5,  = 0.07, S = 0.5, δ = 0.1, Pr =1. 
 

 
 

Fig. 6 ― Velocity profiles for various values of   when M=0.5, 
K=0.5, S=0.5, δ=0.1, Pr =1. 

 
 

Fig. 2 — Velocity profiles for various values of M when K= 0.5, 

 = 0.07, S = 0.5, δ = 0.1, Pr = 1. 
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Fig. 7 ― Temperature profiles for various values   of when M = 
0.5, K = 0.5, S = 0.5, δ = 0.1, Pr =1. 
 

 
 

Fig. 8 ― Velocity profiles for various values of S when M = 0.5, 
K = 0.5, λ = 0.07, δ = 0.1, Pr = 1. 
 

 
 

Fig. 9 ― Temperature profiles for various values S when M = 0.5, 
K = 0.5, λ = 0.07, δ = 0.1, Pr = 1. 
 

Figures 8 and 9 show the effect of suction 
parameter S on velocity and temperature profiles 
respectively. We observe that the effect of increasing 
values of S the velocity and temperature decreases. 
This agrees with the natural phenomena.  

Figures 10 and 11 show the effect of the slip 
parameter δ on velocity and temperature profiles, 
respectively. From the Fig. 9 it is noticed that the 
dimensionless velocity decreases for increasing 
strength of δ, but reversed phenomenon is observed 
for temperature profiles (Fig. 10).  

The effect of Prandtl number (Pr) heat temperature 
may be analyzed from the Fig. 12. It is observed  
that   the  increase  of  Pr  results  in  the  decrease  of 

 
 

Fig. 10 ― Velocity profiles for various values of δ when M = 0.5, 
K = 0.5, λ = 0.07, S = 0.5, Pr = 1. 
 

 
 

Fig. 11 ― Temperature profiles for various values of δ when M = 
0.5, K = 0.5, λ = 0.07, S = 0.5, Pr = 1. 
 

 
 

Fig. 12 ―Temperature profiles for various values of Pr when  

M = 0.5, K = 0.5,   = 0.07, S = 0.5, δ = 0.1. 
 

temperature distribution. The reason is that smaller 
values of Pr are equivalent to increasing thermal 
conductivity and therefore heat is able to diffuse away 
from the heated surface more rapidly than for higher 
values of Pr.  
 

4 Conclusions 
The steady two-dimensional laminar MHD mixed 

convection flow over a vertical permeable sheet 
embedded in a porous medium has been investigated, 
with partial slip condition at the boundary. The 
coupled similar equations were obtained by using a 
suitable variable transformation and solved by Runge-
Kutta fourth order method along with shooting 
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technique. Numerical results were given for the 
dimensionless velocity profiles and dimensionless 
temperature profiles for various values of the 
magnetic parameter M, the permeability parameter K, 
the buoyancy or mixed convection parameter λ, the 
suction parameter S, the slip parameter δ, and the 
Prandtl number Pr. The present solutions are validated 
by comparing with the existing solutions. Our results 
show a good agreement with the existing work in the 
literature. The main physical results of the paper may 
be summarized as follows:  

(i) The effect of magnetic parameter M increases 
the fluid velocity and temperature. 

(ii) The effect of permeability parameter K 
decreases the fluid velocity and increases the 
temperature of the fluid. 

(iii) The effect of the buoyancy or mixed convection 
parameter λ is to increase the fluid velocity and to 
decrease the temperature of the fluid. 

(iv) The effect of suction parameter S decreases the 
fluid velocity and temperature. 

(v) The effect of slip parameter δ is to decrease the 
fluid velocity and to increase the temperature 
of the fluid. 

(vi) The boundary layers are highly influenced by 
Prandtl number Pr. The effect of Pr is to 
decreases the thermal boundary layer thickness. 
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Nomenclature 
a Stretching constant 
B Constant applied magnetic field  
f Dimensionless stream function 
g Gravity acceleration 
Gr୶ Grashof number 
kଵ Permeability of porous medium 
K Permeability parameter 
L Slip length 
M Magnetic parameter  
Pr Prandtl number 
Re୶ Reynolds number 
S Suction parameter 
T Temperature of the fluid 
u, v Velocity component of the fluid along the x and y 

directions, respectively 
x, y Cartesian coordinates along the surface and 

normal to it, respectively  

Greek symbols 
η Similarity variable 
ρ Density of the fluid 
μ Viscosity of the fluid 
α Thermal diffusivity 
β Thermal expansion coefficient 
σୣ Electrical conductivity 
Ѱ Stream function 
ν Kinematic viscosity  
λ Buoyancy parameter  

δ Slip parameter 

θ Dimensionless temperature 
 

Superscript 
‘ Derivative with respect to η 
 

Subscripts 
w Properties at the plate 

 Free stream condition 
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