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In the present study, Casson fluid flow past an instantly stretched sheet is studied. The initial fluid flow is of Crane type. 

At 0t  , the fluid is subject to sudden stretching as well as Quadratic free convection along with the application of a 

sudden transverse Magnetic field. This sets in unsteadiness in the fluid flow. As time progresses, t , the fluid flow 
becomes steady.  The fluid flow settles down to steadiness at different time intervals for different values of parameters. The 
parameters include Quadratic free convective parameter, Grashof number, transverse magnetic field parameter, and Casson 
fluid parameter. The numerical computations are carried out using the well-established Crank-Nicolson method. Validation 
of numerical computations is carried out by comparing the results of computations with analytic solutions at a steady state 
for applicable cases. Our results are in good agreement with the analytic solutions. Plots for Horizontal velocity, Vertical 
velocity, Temperature field, local Skin friction, and local Nusselt number are described. Transient progressive profiles of the 
dependent variables are described to understand the nature of unsteadiness. The results show that the Quadratic free 
convection can be utilized to control the fluid flow to obtain finer results. 

Keywords: Casson fluid, Crane type, Crank-Nicolson method, Magnetic field, Quadratic free convection 

1 Introduction 
Fluid past a stretching sheet has attracted the 

interest of many researchers, industrial investigators 
due to its applications in industries like glass 
manufacturing, plastic industry, textile industry, dye-
making industry, metal sheet, manufacturing industry, 
etc. In this regard, with such a large scale of 
industries, naturally, they require theoretically 
available solutions both in the form of closed-form 
analytical as well numerical solutions. They also 
require small-scale experimental results performed at 
research labs to implement the solutions in their 
manufacturing units. In this regard and significance 
concerning the present report, Crane1 solutions are 
treated as parent investigation, which provides closed-
form solutions for momentum equation and energy 
equation for the fluid flow past a stretching plate. The 
utilization of solutions provided by Crane1 paved the 
way to obtain the closed/analytic form solutions of 
fluid flow with heat and mass transfer with 
suction/blowing over a stretching sheet and was 
published by Gupta & Gupta2. Closed-form solutions 
were obtained for magnetohydrodynamic fluid past a 

permeable stretching sheet by Kumaran et al.3. In 
their investigation, the stretching sheet was 
considered to be quadratic, with linear suction or 
blowing. Plots described the streamline distribution 
across the domain. The finite difference method 
applied to moving surfaces was also considered by 
various investigators. Ganesan & Palani4  have used 
the implicit finite difference method for solving the 
transient free convective problem. In their problem, 
they consider the magnetohydrodynamic fluid flow 
with variable heat and mass flux. The flux is power 
law in nature. Prasad5 employs the finite difference 
method which solves the unsteady fluid flow problem 
with radiation and mass transfer effects included in 
them. The transient effect is set in the two-
dimensional flow due to suddenly moving infinite 
vertical plate. The scheme is an implicit finite 
difference method of the Crank-Nicolson type. 
Muthucumaraswamy & Ganesan6 solve transient 
system which involves heat gradient and mass 
transfer. The study reports the transient effects, which 
are set in due to impulsively started vertical plate, 
maintained at rest initially.  Investigation using the 
finite difference method can be found in Arifuzzaman 
et al.7, Mondal et al.8 & Rabbi et al.9. report the non-
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Newtonian, convective transient boundary layer flow 
of viscoelastic nanofluids with thermal radiation 
along with a vertical (semi-infinite) porous plate with 
periodic magnetohydrodynamics. They report their 
results through streamlines and isotherms after 
validating the results in the literature. Mondal et al.8 
use the explicit finite difference method to investigate 
the transient changes in the Casson fluid. The fluid is 
subject to changes in patterns in time due to the effect 
of the sudden application of a movement of the plate 
along the direction of flow. The fluid is also subject to 
the impact of fickle viscosity and thermal 
conductivity along with suction. The method used is 
the explicit finite difference technique and results 
compared with the literature for simplified cases. 
They report the effects on the dependent variable 
velocities, temperature field, concentration, local skin 
friction X , local Nusselt number, XNu and local 

Sherwood number, XSh . Rabbi et al.9 also published 

research related to explicit finite difference technique 
and Casson fluid flow. The study reports the results of  
Casson fluid parameter, thermo diffusion coefficient, 
Eckert number, Brownian diffusion coefficient, 
Chemical reaction parameter, Magnetic parameter, 
Lewis number, Permeability parameter, etc on the 
dependent variables and their derivatives. Bêg et al.10 
report the non-isothermal, nonlinear magneto 
convection effect on the boundary layer free 
convective flow of fluid with heat and mass transfer. 
The flow is physically subject to ion slip currents, 
joule heating, viscous heating, and Hall current. The 
study uses the Keller box scheme method to extract 
the solutions.  Apart from an investigation involving 
finite difference techniques, the present investigations 
address the nature of the flow of Casson fluid.  

Casson fluid has attracted a lot of investigators in 
the recent past and will continue to do so in the future. 
Ramesh & Devakar11 provide the analytical solution 
for fluid flow of Casson type. They consider the flow 
with slip boundary conditions. The nature of the fluid 
is Couette flow. Solutions in closed form were also 
provided by Kataria & Patel12. They provide the 
solution for Casson fluid subject to magnetic force. 
The fluid is subject to thermal diffusion, heat 
generation/radiation, and chemical reaction. In their 
study, the vertical plate which is embedded through a 
porous medium is subject to oscillation resulting in 
unsteadiness.  Khan et al.13 study the effect of shear 
stress on the fluid of Casson type. The fluid flow 

passes through the vertical plate. They provide 
analytical solutions when the stress is of step function 
and oscillatory concerning time. Casson fluid flow 
past a non-linearly stretching sheet was investigated 
by Ahmed et al.14. The fluid is subject to slip 
conditions. The stretching sheet is nonlinear (that is, 
power-law in nature concerning the distance from the 
origin). The study involves addressing the Entropy 
generation. Khan et al.15 consider the Casson fluid 
reacting chemically.  Mahanthesh & Greesha16  study 
the dusty Casson fluid flow. They study the Thermal 
Marangoni convection in two-phase flow. Fluid and 
dust particle temperature is a quadratic function of 
interface arc length. The ordinary differential 
equations thus obtained are evaluated using the 
Runge-Kutta-Fehlberg method. Patel17 addresses the 
issue of Casson fluid flow subject to cross-diffusion 
and heat generation on mixed convection. The fluid is 
also subject to flow through a porous medium, 
transverse magnetic field, and non-linear thermal 
radiation. The fluid flow is subject to a porous 
medium. Raza18 reports the convective stretching 
sheet with slip and thermal radiation of Casson fluid 
flow near the stagnation point.  The partial differential 
equations (PDEs) are transformed to ordinary 
differential equations (ODEs) using similarity 
transformation. The obtained ODE’s are then solved 
using Runge-Kutta-Fehlberg (RKF) method. A 
comparative study of Maxwell and Casson fluid was 
carried out by Kumar et al.31. They adopt the 
Buongiorno19 model for governing equations. Casson 
fluid flow has been subject to the wavy surface too by 
Prasad et al.20. Their investigation report the mixed 
convection, double-diffusive in the presence of 
Darcian porous medium. Mackolil & Mahanthesh21 
report the statistical solutions along with the exact 
solutions for Casson fluid flow past a vertical plate. 
The flow is unsteady subject to radiation and the 
Dufour effect. Abdelmalek et al.22 report the effect of 
activation energy on the Casson fluid flow. The 
magnetohydrodynamic Casson fluid flow is subject to 
Stefan blowing effects and the results are addressed in 
their investigation. 

Recently, there is an interest among researchers to 
investigate the effect of Quadratic free convection on 
the fluid flow past moving surfaces. Quadratic free 
convection or non-linear natural convection was used 
by Venkatadri et al.29. They carried out their study to 
understand the flow patterns inside a square cavity 
which is driven by the lid. The nature of micropolar 
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fluid flow was reported by Reddy et al.30. Quadratic 
free convection is included in the fluid flow through 
an inclined flat plate which has the effect in a non-
Darcy porous medium. Their study includes a variety 
of densities concerning changes in temperature and 
concentration. Dusty Casson and dusty Carreau fluid 
flow’s nature including the quadratic natural 
convection was investigated by Mahanthesh et al.16.  
Heat source/sink effects which are non-uniform are 
included in their investigation of fluid flow. 
Balamurugan & Kumar28 have recently carried out the 
study on Casson fluid flow including the quadratic 
natural convection past a stretching sheet where the 
initial flow of the fluid is non-zero. 

Apart from the above studies, continuous 
investigations are carried. Selvaraj et al.32 explore the 
solutions which are obtained through the analytic 
method for parabolic stream and its rotation effect 
near a impenetrable viscous and electrically 
coordinating fluid past a reliable quickened unbound 
isothermal perpendicular plate in the proximity 
warmth and mass trade in the presence of MHD. 
Rabbi et al.33 has researched the effects of MHD, 
radiation (thermal), and chemical reaction on Casson 
Nanofluid past a stretching sheet. They implement 
their solutions through the explicit finite difference 
method.  Krishna et al.34 studies the effects on MHD 
convective flow which pasts through an infinite 
absorbent vertical plate. Kumar et al.35 investigate the 
results through the efficient Galerkin method of 
Radiation, Soret, and Dufour, Hall current effects 
over an infinite vertical plate fixed in a porous media. 
Narahari et al.36 implement the Crank-Nicolson finite 
difference method to the transient natural convective 
two-dimensional boundary layer nanofluid past a 
vertical plate with constant heat flux with the 
additional effect of Brownian motion and 
thermophoresis. Correlation results of local (state) 
Nusselt number for the limiting case are being 
performed in their analysis. Implementation of the 
Crank-Nicolson method was also carried out by 
Umamaheswar et al.37 who studied the unsteady non-
Newtonian viscoelastic second-order Rivlin-Erickson 
MHD fluid in the presence of thermal radiation, 
thermal diffusion, viscous dissipation, radiation 
absorption, heat absorption, and homogeneous 
chemical reaction with constant mass flux. Prasad et 
al. studied the free convection for the MHD steady 
fluid flow with heat and mass transfer in a non-Darcy 
porous medium along with the Soret and Dufour 

effects. They implement the Keller-Box implicit finite 
difference scheme to evaluate the partial differential 
equations. Syafiqah & Narahari39 carry out the studies 
of amplified velocity effects on the unsteady natural 
convective fluid past a plate with nanoparticle 
migration and heat transfer behavior subject to heat 
flux. They adopt the second-order accurate Crank-
Nicolson finite difference method to extract the 
solutions of the transformed governing equations. 
Adaptation of the same scheme is also done by 
Narahari et al.40 to solve the non-homogeneous 
convective nanofluid flow past a moving unsteady 
vertical plate. Astuti et al.41 study the nanofluid’s 
natural convection past a vertical plate which is set to 
acceleration with variable wall temperature depending 
on time. They employ the Crank-Nicolson method to 
solve the partial differential equation in two 
independent variables. 

There occurs problems in the industry where the 
fluid flow is uniform. Fluid flow at a specific instant 
is subject to introduction to physical interference. 
This may be in the form of the introduction of dye(s) 
in the textile industry,  molding of metal sheets with 
the introduction of magnetic fields, changing the 
temperature of the fluid, etc. All this physical change 
results in a significant change in the end product 
whether in the form of garments, metal plates, or 
plastic molds. All these products have one thing in 
common, the introduction of physical effects at a 
specific time instance in an already set uniform 
motion.  

In the present investigation, it is this part the 
authors wish to report. In the problem, the fluid flow 
which is assumed to be viscous fluid (Casson fluid), 
initially is flowing with a predefined velocity. At a 
certain instant of time, the fluid is subject to physical 
changes. This introduction of physical changes 
disturbs the flow behavior from steady to 
unsteadiness. The unsteadiness so generated then 
settles down to an adapted steady flow.  

As the authors believe the behavior of fluid flow 
due to these effects is an important topic to  
be addressed, the present investigation has been 
carried out. 

In the next section, the concept is modeled through 
mathematical equations namely the governing 
equations. Then the mathematical governing 
equations are simplified to non-dimensional forms. 
Section  3 reports the method by which the numerical 
computation is carried out. Section 4  describes the 
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plots and includes illustrations to understand the plots 
and hence the fluid behavior. The paper ends with a 
conclusions section about the present study and 
prospects. 
 

2 Problem Formulation  
Consider an incompressible laminar unsteady 

Cassonfluid flowing past a stretching sheet. The Casson 
fluid initially flows with the horizontal velocity,u , 
vertical velocity, v respectively. The horizontal and 
vertical directions are given by x  and y -axis. The 

magnitude of the velocities initially, ( 0)t  , is given 

by exp
c

u c x y


 
      

 
and

1 exp
c

v c y


  
           

, respectively, which are 

nothing but the closed-form solutions obtained by 
Crane1. Here t , c ,  are the time, stretching parameter 
(>1), and kinematic viscosity of the fluid. The stretching 
sheet issues through the coordinate axis at 0y  , along 
with the mentioned conditions and the fluid being 
subject to wall temperature given by 

   

exp Pr,Pr 1, Pr exp

Pr,Pr 1, Pr

c c
F y

w F
T T T T

 

     
               

   
       

 

whereT  ,T , wT  , Pr  are the transient temperature, 

the temperature at far of a distance from the sheet, 
temperature at the wall, and Prandtl number. The 
expression (.)F is the hypergeometric function. At 

0t  , the sheet is stretched with a velocity 
proportional to the distance from the origin given by
c x   , where c  is the proportionality constant 
(stretching constant, (>1)), with wall temperature 
changing to wT T T T       .  The fluid is subject to 

quadratic free convection along with free convection 
and applied transverse magnetic field. For an 
incompressible and isotropic flow, the  rheological 
equation of the state of a Casson fluid is given by 
Kataria[13],  

2 ,
2

,

2
2

y
B ij c

c

ij

y
B ij c

c

P
E

P
E







  
         

 
       

          … (1) 

where ij  is the  ,i j  th component of the stress 

tensor, B is the plastic dynamic viscosity of the non-

Newtonian fluid, and yP is the yield stress of the fluid. 

The product of the component of deformation rate 
with itself is given The letter  gives its product of 

the component of deformation rate. ijE are the , -

th component of the deformation rate, and as earlier 
mentioned the relation connecting the two is given by 
the expression ij ijE E  . The critical value , c , is 

this product is based on the non-Newtonian fluid. So, 
Solid type or motion type behavior is observed if the 
shear stress is less than the applied yield stress to the 
fluid or if the shear stress is greater than the yield 
stress. 

Assuming negligible Reynold’s magnetic number, 
invoking the Boussinesq’s approximation, the model 
for the fluid flow obeying the above conditions are 
given by the governing equations, 

 

0
u v

x y

  
 
  

,  … (2) 
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p
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u
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

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,               … (4) 

0, , 0 :t x y      

exp ,
c
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
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                                   … (5)

 

1 exp
c

v c y


  
           

,                    … (6) 

 

, 1,
'

' ' , 1,

c c
y y

w

e F Pr Pr Pre
T T

T T F Pr Pr Pr

 
 
  





 
 


 
   

      … (7)

 



INDIAN J PURE APPL PHYS, VOL. 59, NOVEMBER 2021 

 
 

760

0, 0 :t y    
,u c x     … (8) 

 
0v  ,   … (9) 

 
' ' 'wT T T T    ,   … (10) 

 
Applying the dimensionless variables t t c   ,

c
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
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non-dimensionalizing (1)-(3) along with 

the initial conditions and boundary conditions (4)-(5), 
we get, 

0
u v

x y

 
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  , … (11)  
2

* 2
2

1
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u u u u
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,                     … (12) 
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T T T T
u v

t x x y
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0, , 0 :t x y    

 exp ,u x y 
                                           … (14)                                         

 

  1 exp ,v y   
                                   … (15) 

 
 

, 1,
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y ye F Pr Pr Pre
T

F Pr Pr Pr
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

                       … (16) 
0, 0:t y   

,u x                                                           … (17) 

0v  ,              … (18) 
 

1,T                                                           …  (19) 
 

where, Gr, Gr* are the Grashof number, and 
Quadratic free convection parameter. 
 
3 Computational method for the Mathematical 
model 

The non-dimensional equations Eqs. (11-13) along 
with non-dimensional initial and boundary conditions 
(14) to (19) are solved using the implicit finite 
difference method of Crank- Nicolson type5,6. The 
forward difference for first-order derivative terms 
concerning time, the backward difference for first-
order derivative terms along the horizontal direction, 
the central difference for the second-order derivative 
terms along the vertical direction are applied for 
discretization. The method is unconditionally  
stable29, 30. The computation is carried out for the 
domain 0≤x≤1 and 0≤y≤15 with the mesh size kept at 
x= 0.002, y= 0.01, and t= 0.001 along the x, y-axis, 
and time, t respectively.  

Numerical experiments were performed to take care 
that the profiles for all the discussed cases did not 
change significantly or encounter any abrupt changes. 
Considering these numerical experiments the domain 
was so chosen such that the profiles are captured 
smoothly and that there is no variation in the final values 
(steady-state) of the dependent variable to a certain 
tolerance limit. The stopping criteria of the iterations are 
set less than or equal to 5×10−5 for the dependent 
variables namely, the dimensionless horizontal velocity 
and the dimensionless temperature profile, u, T. 

In check that the given scheme is in order, the error 
computations were made forGr = Gr*=0.0. For this 
case the Eqs. (11) and (12) admit closed-form 
solutions.  Consequently, the exact local skin friction 

is given by 1x

u
x M

y
 
   


(Kumaran et al.23) 

The Fig. 1(a,b) shows the comparison of exact and 
computed local skin friction profile. One can observe 
from the profile that the profiles of computed as well 
as the exact values are in agreement for the two 
magnetic parameter numbers (M = 0.0 and 12.0). 

This shows that our computations are in order and 
hence, we can proceed to extract results of importance.  
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Therefore, it becomes opt for carrying out 
computations further for non-zero values of Grashof 
number and Quadratic free convection parameter, Gr 
and Gr* respectively. Consequently, we discuss the 
results in the following section. 

The dimensionless local Nusselt number is given 
by 24,  

0

X

y

T
Nu x

y 


 


.   

 
4 Results and Discussion 

The results in Fig. 2-16 and Fig. 21-22, are 
described for 0.1   and Fig. 17-19 for 1.0  . 

Fig. 2 describes the horizontal velocity of the fluid 
flow due to the increasing value of the strength of the 
magnetic field, M. The M value increases from 0.0 to 
12.0 as shown in the plot. This is a fact in the 
literature. This slowdown or decrease in the 
horizontal velocity is due to Lorentz's force which 
arises due to the application or introduction of an 
applied magnetic field. The Lorentz force can hold 
down/suppress the flow of fluid12. In this figure the 
plots are made for the Quadratic convection 
parameter, Gr*, being zero that is there is no free 
nonlinear natural convection. Also, the Grash of 
number, Gr, is zero indicating that there is no natural 
convection. The plots in the figure, hence, are free 
from any natural convection effects and indicate the 
behavior of the fluid due to the applied magnetic field 
alone. The steady-state curves (or plots) described 
here have encountered a non-zero velocity of the fluid 
at the time, t = 0. Hence, they are of significance and 
different from the study on MHD literature. Earlier 
study analog to the present study was carried out by 
cited literature23-28. It must be noted that these plots 

are again the once same as Kumaran et al.23 for  
M = 0, 1.0. One can observe that there is a sharp 
change in the slope of the curves as the magnetic 
force gets increased. 

Figure 3. represents the steady vertical velocities of 
the fluid in absence of natural convection and 
Quadratic natural convection. Again, the profiles are 
under the influence of the magnetic field alone. These 
contours are extracted using the continuity equations, 

 
 

Fig. 1(a) — Exact local skin friction, Kumaran et al.23 and (b) Computed local skin friction. 

 
 

Fig. 2 — Steady-state horizontal velocity profiles, 0.1 
. 

 

 
 

Fig. 3 — Steady-state vertical velocity profiles, 0.1 
. 
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since, the fluid flow must satisfy the law of 
conservation of mass. They are opposite in sign and 
the vertical velocity flux across the vertical axis is 
opposite to horizontal velocity flux across the 
horizontal axis. Fig. 4. represents the temperature 
field, which shows an increase as the power of the 
applied transverse magnetic field increases. The 
temperature change is proportional to the values of 
the magnetic parameter. For M = 0.0, 0.2, 0.4, 0.7, 1.0 

the profiles are clustered together compared to the 
profiles of temperature for M = 2.0, 4.0, 7.0, 12.0. 
They are more distinct and separate from each other 
as the magnetic parameter increases. 

Similarly, Fig. 5-6, represents the effect of applied 
transverse magnetic effect on local skin friction and 
local Nusselt numbers. One can conclude the facts 
observing the plots and they are consistent with 

 
 

Fig. 4 — Steady-state temperature profiles, 0.1 
. 

 

 
Fig. 5 — Steady local skin friction, 0.1 
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Fig. 6 — Steady Nusselt number, 0.1 
. 

 
 

Fig. 7 — Steady-state horizontal velocity profiles, 0.1 
. 

 

 
 

Fig. 8 — Steady-state vertical velocity profiles, 
0.1 

. 
 

 
 

Fig. 9 — Steady-state temperature profiles, 0.1 
. 
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The local skin friction is observed from Fig. 10, 
shows a decrease and becomes non-linear with non 

zero Grashof number near,  0x   , then the curves 

straighten up as  1x  . The curve (slope) gets 

steep (in the negative direction) as the Grash of 
number increases. 

Observing concerning Fig. 4, the steady 
temperature in Fig. 9, shows a trend reversal 

compared to the profiles due to applied transverse 
magnetic field. As a consequence observing Fig. 11, 
the local Nusselt number shows an increase with the 
increase in natural convection. Since the local Nusselt 
number represents the temperature gradient 
concerning the vertical axis, it shows that the natural 
convection helps in the transfer of temperature across 
the vertical direction, hence, an increase in the 

 
 

Fig. 16 — Steady Nusseltnumber, 0.1  . 

 

 
 

Fig. 17 — Difference between the horizontal profiles, 1.0  . 
 

 
 

Fig. 18 — Difference between the vertical velocity profiles,

1.0 
. 

 
 

Fig. 19 — Difference between the Temperature profiles, 1.0  . 
 

 
 

Fig. 20 — Evolution of the horizontal velocity profiles at a time
gap of 100 iterations or 1.0 step, 0.1  . 
 

 
 

Fig. 21 — Evolution of the vertical velocity profiles at a time gap

of 100 iterations or 1.0 step, 0.1 
. 
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gradient. The negative sign signifying that this 
decreases as one moves upwards or y  increases.  

Fig. 7-8, shows the velocity profiles for natural 
convection. The horizontal velocity profiles, Fig. 7, 

show an increase close to the wall that is 0y y   , 
then drops down after reaching the peak. This shows 
that the heat transfer is significant near the stretching 
sheet. The vertical velocity profiles work to 
compensate for this effect. As expected from Fig. 10, 
the local skin friction shows a decrease with an 
increase in natural convection. 

From Fig. 12-16, the profiles are described for  
non-zero Grashof number, Gr and Quadratic free 
convection parameter, Gr*. The values taken are M = 
0.0, Gr = 0.0, 2.0, 5.0, 10.0, and the Gr* = Gr/10=0.0, 
0.2, 0.5, 1.0. Note that the profiles are similar 
compared to Fig. 7-11. The difference between this 
set of figures is that they are under the effect of non-
zero effect of Quadratic free convection parameter, 
Gr*. One can observe from the graphs of Fig. 12, the 
effect of Grashof number, Gr, when it takes 
increasing values. As the natural convection effect 
increases the horizontal velocity starts to show a 
increase. Contrary behavior is observed concerning 
vertical velocity. The difference can be seen 
compared to Fig. 2. The effect of natural convection 
can be used to counter the applied transverse 
magnetic field. With an increase in the natural 
convection, the temperature field decreases as seen 
from Fig. 9. Also, looking at Fig. 10, the local skin 
friction decreases with the increase in the natural 
convection. The local skin friction patterns show  
non-linear behavior as the Grashof number, Gr, takes 
values from 0.0 to 10.0. 

The local skin friction shows a decline in the 
values with an increase in the Grashof parameter, and 

the Nusselt number shows an increase in the profiles 
when the Grash of parameter increases as shown in 
Fig. 11. The curves in this figure show a non-linear 
behavior with an increase in the Grashof number, Gr. 
This trend can be seen for 0y   . 

In order, to get an insight into the behavior of these 
curves, Fig. 17-19, shows the difference between the 
steady-state profiles of velocities and temperature. 
The curves represented in these figures show the 
difference between the values of steady-state curves at 
Gr* not equal to 0.0 and Gr* equal to zero. One can 
conclude that the Quadratic free convection helps in 
further enhancement of velocities. With an increase in 
the values of Gr and Gr* one sees that the velocity 
increase and the scale at which it increases, from 
these figures. From Fig. 19, the temperature profile 
also increases in a similar order of magnitude as 
velocity for an increase in Gr*, but in opposite 
direction. There are only three sets of curves in each 
of these figures because for the fourth one no 
difference is observed (Gr=Gr*=0.0). 

Fig. 20-22, show the time evolution of the patterns 
of the velocities and temperature profiles. They 
describe the flow behavior as time progresses. 

The evolution pattern does decrease in the case of 
horizontal velocity and they are of order ~10-1. 
However, the temperature evolutionary patterns are 
distinctly visible. This trend is obvious since the 
application of natural convection and quadratic free 
convection subdues the temperature field. Since this 
being an evolutionary pattern it decreases and gets 
down to a steady profile. 
 
5 Conclusion 

In the present paper, the effect of Quadratic free 
convection parameter and natural convection along 
with applied magnetic field effects on the Casson 
fluid flow moving over a stretching sheet is carried 
out. The patterns using numerical methods are 
extracted and analyzed. The major finds include the 
effect of Quadratic free convection. They act in the 
backward and aid in further natural convection. The 
Quadratic free convection effects are seen from the 
profiles. The findings give a better prospect on the 
application of Quadratic free convection. The natural 
convection and the Quadratic free convection effects 
are counteractive to the applied transverse magnetic 
field, the Quadratic free convection can be used to 
bring in mild changes to the actions caused by the 
applied magnetic field. This can greatly enhance or 

 
 

Fig. 22 — Evolution of the temperature  profiles at a time gap of
100 iterations or 1.0 step, 0.1  . 
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fine-tune the final product in the manufacturing sector 
such as Glass and Plastic industry.  The investigators 
believe that the finer aspect of Quadratic free 
convection can be studied in the future, with other 
conventional physical aspects of fluid flow. The 
authors also believe that the present numerical scheme 
in the form of implicit finite difference method  
of Crank-Nicolson method can give a very  
good insight into the flow patterns, considering 
 the inclusion of unsteadiness along with 
study/investigation/research of steady case fluid 
flow. Hence, the authors wish to utilize this aspect  
in further research in this field. 
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Nomenclature 

List of Symbols 

t Time 

x Horizontal axis 

yVertical axis 

u Horizontal velocity 

v  Vertical velocity 

T  Transient temperature 

wT Wall temperature 

T Ambient fluid temperature 

g Gravitational acceleration 

0B Transverse magnetic field 

ijE  ,i j th  component of the deformation rate 

pC Specific heat at constant pressure 

XNu Local Nusselt number 

yP Yield stress of the fluid 

t Dimensionless time 
x Dimensionless horizontal axis 
y Dimensionless vertical axis 

u Dimensionless horizontal velocity 
v Dimensionless vertical velocity 

T Dimensionless transient temperature 
M Dimensionless applied magnetic field parameter 
Pr Prandtl number 
Gr  Grashof number 
Gr* Quadratic free convection parameter 


   Heat transfer coefficient 

*   Non-linear volumetric thermal expansion  

        coefficient 
    Product of the component of deformation rate  
       with  itself 

c
 
 Critical value of this product based on the non- 

        Newtonian model 
     Thermal conductivity of fluids 
    Density of the fluid 

    Electrical conductivity of the fluid 
     Kinematic viscosity of the fluid 

ij    
Rheological equation of state 

X   Local skin friction 
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