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In the present paper, an analysis is presented to study the effect of slip and suction on the dual nature of the solution of 

the three dimensional boundary layer flow of an incompressible fluid and heat transfer towards a porous axisymmetric 

shrinking sheet. The governing equations are transformed into self-similar non-linear ordinary differential equations by 

using suitable similarity transformations and then the transformed equations are solved numerically using the shooting 

technique with Runge-Kutta forth order method. The numerical results of velocity and temperature profiles as well as skin-

friction coefficient and Nusselt number are obtained and displayed graphically with different pertinent parameters to show 

interesting aspects of the solution. The investigation explores the conditions of the non-existence, the existence and duality 

of the similarity solutions which depend on the suction parameter S as well as slip parameter �. The dual solutions exist in a 

certain domain of suction parameter S and due to an increment in the slip parameter �, the domain of S where the similarity 

solution exists, also increases. Also, for increasing values of S and �, the thickness of the both momentum and thermal 

boundary layer is decreasing for the first solution while for second solution it is increasing. 
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1 Introduction 

 The viscous flow over a stretching sheet is 

significant due to its enamors applications in 

engineering processes such as glass-fiber production, 

wire drawing, paper production, extraction of polymer 

sheets and many others
1,2

. Crane
3
 was the first who 

investigated the steady viscous flow of an 

incompressible fluid over a linearly stretching sheet 

and gave an exact similarity solution in closed 

analytical form. Crane’s work was extended by many 

researchers such as Gupta and Gupta
4
, Pavlov

5
, 

Chakrabarti and Gupta
6
, Carragher and Crane

7
, 

Mukhopadhyay and Anderson
8
 and Jat et al

9
. under 

various physical conditions. Wang
10

 studied the 

steady three dimensional viscous flow over a plane 

surface which is stretched in its own plane in two 

lateral directions at different rates. Further, Ariel
11

 

gave generalized three-dimensional flow due to a 

stretching sheet.  

 Recently, the development of an unusual flow due 

to a shrinking sheet has attracted considerable interest 

because the flow induced by the shrinking sheet 

shows quite distinct physical phenomena from the 

stretching sheet case. A steady boundary layer flow 

over a shrinking sheet is not possible as the vorticity 

generated in this case is not confined within the 

boundary layer region. To maintain the boundary 

layer structure, the flow needs a certain amount of 

external suction at the porous sheet. Miklavcic and 

Wang
12

 investigated both two-dimensional and 

axisymmetric viscous flow induced by a shrinking 

sheet in the presence of uniform suction and 

established the criteria of existence, non-existence, 

uniqueness and duality of the similarity solutions for 

both cases. This problem was extended to power-law 

surface velocity by Fang
13

 and then under various 

physical aspects, the most significant work on 

shrinking sheet was done by many researchers such as 

Hayat et al
14

., Muhaimin et al
15

., Wang
16

, 

Turkyilmazoglu
17

, Bhattacharyya and Layek
18

 and Jat 

and Rajotia
19

 etc. Ali et al
20

. investigated MHD 

viscous flow and heat transfer with prescribed surface 

heat flux and gave dual solutions for two dimensional 

flow and unique solution for axisymmetric flow. 

Bachok et al
21

., extended the idea for unsteady three 

dimensional boundary flow and found dual solutions 

in a certain range of suction parameter and 

unsteadiness parameter. Further, comparison between 

two dimensional and axisymmetric flow over a 

shrinking sheet with variable wall temperature was 

considered by Jat and Rajotia
22

. Recently, 

Turkyilmazoglu
23

 analyzed the two dimensional fluid 
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flow and heat transfer of a micro polar fluid over 

porous shrinking sheet and obtained dual solutions in 

closed form. MHD fluid flow and heat transfer due to 

a shrinking rotating disk were also considered by 

Turkyilmazoglu
24

. He used a spectral numerical 

integration scheme to investigate the effects of 

rotation parameter on the problem. 

 The assumption that the flow field obeys the 

conventional no-slip condition at the sheet, i.e., the 

velocity component parallel to the sheet becomes 

equal to the sheet velocity at the sheet. In certain 

situations, however, the assumption of no-slip is not 

applicable and should be replaced by the partial slip 

boundary condition. Also, the fluids that exhibit the 

boundary slip have important technological 

applications such as in the polishing of the artificial 

heart valves and internal cavities. Wang
25

 has 

considered the influence of partial slip on the flow of 

a viscous fluid over a stretching sheet and obtained 

the solution numerically. Andersson
26

 discussed the 

partial slip effects on the flow characteristics of a 

viscous fluid by finding an exact analytical solution 

for the above Wang
25

 problem. Ariel
27

 has studied the 

steady, laminar, axisymmetric flow of a Newtonian 

fluid due to a stretching sheet with a partial slip 

boundary condition. Further, Wang
28

 has revived an 

interest in the viscous flow due to a stretching sheet 

with slip and suction. In the present study, he has 

considered both the two-dimensional and the 

axisymmetric cases. Sahoo
29

 considered the above 

problem of partial slip with a non-Newtonian second 

grade fluid past a radially stretching sheet. Recently, 

Bhattacharyya et al
30,31

. gave slip effects on steady 

and unsteady stagnation-point flow towards a 

shrinking sheet, respectively. The physically pure 

exponential type solutions for MHD two dimensional 

flow of non-Newtonian fluid over a shrinking surface 

were obtained by Turkyilmazoglu
32

 to investigate 

whether the solutions were unique or multiple under 

the influence of slip condition. Consequently, 

Turkyilmazoglu
33

 gave the exact analytical solutions 

for heat and mass transfer of MHD slip 2D flow in 

nanofluids and then the second order slip flow was 

also taken by Turkyilmazoglu
34

. Recently, 

Turkyilmazoglu
35

 extended the problem of Miklavcic 

and Wang
12

 in the presence of the velocity slip in the 

flow field and heat jump in the temperature field, 

respectively and gave algebraic solutions. He obtained 

multiple solutions in the case of shrinking sheet for 

certain values of slip and suction parameter while 

unique solution for stretching sheet. 

 Miklavcic and Wang
12

 reported that for 

axisymmetric flow over the shrinking sheet the 

similarity solution (unique and dual) exists for 

S=1.31175869 and there is no solution for 

S=1.31175869. On the other hand, Turkyilmazoglu
35 

extended above problem in the presence of slip 

condition and obtained that the dual solutions exists 

for λ∈(−0.27217,0). In the present paper, we have 

taken a three dimensional boundary layer viscous 

flow of an incompressible fluid and heat transfer due 

to a porous axisymmetric shrinking sheet with slip 

and suction and get numerical results which give 

comparatively a favourable agreement with the results 

of Miklavcic and Wang
15 

and Turkyilmazoglu
35

. The 

main result emerging from the study is that the dual 

solutions exist not only for negative values of slip 

parameter (mentioned by Turkyilmazoglu
35

) but also 

for positive values of slip parameter (Not obtained by 

Turkyilmazoglu
35

). 

 

2 Formulation of the Problem 

 Consider a three-dimensional viscous slip flow of 

an incompressible fluid due to a porous axisymmetric 

shrinking sheet which coincides with the plane 0z =  

while the flow is confined in the plane 0z > . The x 

and y axes are taken along the length and breadth of 

the sheet and z-axis is perpendicular to the sheet, 

respectively. A uniform suction W is applied normal 

to sheet to contain the vorticity (Fig. 1). 

 Under the usual boundary layer approximations, the 

basic governing boundary layer equations (Miklavcic 

and Wang
12

) are : 
 

0
u v w

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
  …(1) 

 

2

2

1u u u p u
u v w

x y z x z
ν

ρ

∂ ∂ ∂ ∂ ∂
+ + = − +

∂ ∂ ∂ ∂ ∂
  …(2) 

 
 

Fig. 1 — Systematic diagram of physical model 
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2

2

1v v v p v
u v w

x y z y z
ν

ρ

∂ ∂ ∂ ∂ ∂
+ + = − +

∂ ∂ ∂ ∂ ∂
  …(3) 

 
2

2

1w w w p w
u v w

x y z z z
ν

ρ

∂ ∂ ∂ ∂ ∂
+ + = − +

∂ ∂ ∂ ∂ ∂
…

  …(4) 

 
2

2

p

T T T T
u v w

x y z c z

κ

ρ

� �∂ ∂ ∂ ∂
+ + = � �

∂ ∂ ∂ ∂� �
 …(5)

  
 

where ( , , )u v w
 
be the velocity components along the 

( , , )x y z  directions, respectively, p the pressure, ρ the 

density of the fluid, µ the dynamic viscosity, 
µ

ν
ρ

=  is 

the kinematic viscosity, κ the thermal conductivity 

and cp is the specific heat at constant pressure.The slip 

boundary conditions applicable to the present flow 

are: 

 

00 : ,
u

z u U
z

λ
∂� �

= = − + � �
∂� �

 
0 ,

v
v V

z
λ

∂� �
= − + � �

∂� �
 

,w W= −  wT T=  

:z → ∞  0,u →  0,v →  T T∞→   …(6) 

 

where ( 0)a >  is the shrinking constant, U ax=  and 

V ay=  are the shrinking velocities, ( 0)W >  is the 

suction velocity, λ0 the velocity slip coefficient, Tw 

the sheet temperature and T∞ is the free stream 

temperature. 

 

3 Analysis 

 Introducing the following similarity 

transformations: 
 

'( ),u axf η=  ( ),v ayf η′=  

2 ( ),w a fν η= −  ( ) ,
w

T T

T T
θ η ∞

∞

−
=

−
 

a
zη

ν
= ,  …(7) 

 

Eq. (1) is identically satisfied by the similarity 

transformations while Eq. (4) becomes: 

 
2

2

p w w

z
ν

ρ

∂
= − +

∂
constant  … (8) 

Eqs (2) and (3) reduce to the same Eq. (9), while  

Eq. (5) reduced Eq. (10) as: 

 
2''' 2 '' ' 0f ff f+ − =   …(9) 

 

'' 2 Pr ' 0fθ θ+ =
 
 …(10) 

 

Corresponding boundary conditions are: 

 

0 :η =  ,f S=  ' 1 '',f fλ= − +  1,θ =  

:η → ∞  ' 0,f →  0,θ →   …(11) 

 

where prime (′) denotes differentiation with respect to 

similarity variable η, 
2

W
S

aν
=  is the Suction 

parameter, Pr
pcµ

κ
=  is the Prandtl number and 

0

a
λ λ

ν
=  is the Slip parameter. 

 The physical quantity of interest is the local skin 

friction coefficient Cf  on the surface along the x and y 

directions, which are denoted by Cfx and Cfy, 

respectively and the local Nusselt number Nu i.e. 

surface heat transfer is given by: 
 

( )0

2 2

2
'' 0

/ 2 / 2 Re

wx z

fx

x

u

z
C f

U U

µ
τ

ρ ρ
=

∂� �
� �

∂� �
= = = , 

( )0

2 2

2
'' 0

/ 2 / 2 Re

wy z

fy

y

v

z
C f

V V

µ
τ

ρ ρ
=

∂� �
� �

∂� �
= = =

 
and 

( )
( )0 Re ' 0z

x

w

T
x

z
Nu

T T
θ=

∞

∂� �
� �

∂� �
= − = −

−
  …(12) 

 

where τwx and τwy are the wall shear stresses along the 

x and y-directions, respectively and Re x

Ux

ν
=  and 

Re y

Vy

ν
=  are the local Reynolds numbers. 

 

4 Method of Solution 

 The set of nonlinear ordinary differential Eqs (9) and 

(10) with boundary conditions given in Eq. (11) are 

solved numerically by converting them to an initial 

value problem (IVP). We set: 
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' ,f p=
 

' ,p q=
 

2' 2q fq p= − +   …(13) 

 

' ,rθ =
 

' 2 Prr rf= −   …(14) 

 

With boundary conditions: 

 

(0) ,f S=  (0) 1 (0),p qλ= − +  (0) 1,θ =  

'( ) 0,f η∞ =  ( ) 0θ η∞ =   …(15) 

 

 In order to integrate Eqs (13) and (14) as an initial 

value problem, one requires a value for q(0) i.e. f″(0) 

and r(0) i.e. θ ′(0) but no such values are given in the 

boundary conditions given in Eq. (15). The suitable 

guess for f″(0) and θ ′(0) iis chosen by the shooting 

technique and then the fourth order Runge-Kutta 

method is applied to obtain the solution. Then we 

compare the calculated values for f
 ′ and θ at η∞=10 

(say) with the given boundary conditions f ′(10)=0 

and θ(10)=0 and adjust the estimated values of f″(0) 

and θ ′(0) using the Secant method to give a better 

approximation for the solution. The step-size is taken 

as h = 0.001. The above procedure is repeated until 

we get the converged results within a tolerance limit 

of 10
−7

. All the computations are done in the Matlab 

software which uses a symbolic and computational 

language. 

 
5 Results and Discussion 

 Before analyzing the numerical computation for 

obtaining the condition under which the steady flow is 

possible over the axisymmetric shrinking sheet in 

presence of boundary slip condition for various values 

of the parameters involved such as suction parameter 

S, slip parameter λ and Prandtl number Pr, we are 

discussing about previously published analytical 

results of Miklavcic and Wang
12

 and 

Turkyilmazoglu
35

. First of all Miklavcic and Wang
12

 

gave algebraic decaying exact solution as 
2

( ) ,
S

f
S

η
η

=
+

 

for viscous axisymmetric flow due to a shrinking 

sheet in the presence of uniform suction with no slip 

boundary condition i.e. 0λ =  and noticed that for 

S
 
<

 
S0=1.31175869, there exist no solution and for 

1 1.4238297 2,S S> = ≈  there exists only one 

solution, while dual solutions exist for 0 1S S S< < . 

Recently, Turkyilmazoglu
35

 extended the above 

problem in the presence of slip boundary condition 

i.e. 0λ ≠ . He also gave algebraic decaying solutions 

as 2
( ) ,

2

S
f

S
η

η
=

+
 and observed that the dual solutions 

were simply given only in the range of slip parameter 

( 0.27217,0)λ ∈ − . 

 Now, for a comparative analysis with Miklavcic 

and Wang
12

 and Turkyilmazoglu
35

, we have plotted 

the Fig. 2(a) of the skin friction coefficient against S 

for several values of λ. It is noticed from Fig. 2(a) that 

for no slip boundary condition, there is no similarity 

solution for S<1.312�S0 and consequently, there exist 

only the dual solutions for all values of S
 ≥ 

1.312. 

Hence, in the absence of slip boundary condition, the 

present numerical investigation explores the 

conditions of either no solution or dual solutions. 

Further, for some negative values of λ=−0.1, −0.2, 

−0.27 (which are taken from the range of 

λ∈(−0.27217, 0) mentioned by Turkyilmazoglu
35

 who 

obtained dual solutions there), there also exist dual 

solutions. Finally, these results give us a favourable 
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Fig. 2 — Skin friction coefficient against S with several values of 

slip parameter �. (S′ denotes critical values of S) 
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agreement with the solutions of Miklavcic and 

Wang
15

 and Turkyilmazoglu
35

. 

 Consequently, a new result is emerged in the 

further analysis. It is noticed that for positive values 

of slip parameter i.e. λ >
 
0, there also exist dual 

solutions which were not mentioned by 

Turkyilmazoglu
35

. For this new result, we have 

plotted Fig. 2(b) of the skin friction coefficient against 

S for several positive values of λ. It is observed that 

for increasing values of S, the f
 ″(0) increases for the 

first solution (upper branch) while for the second 

solution (lower branch) it decreases with S. Further, 

for increasing values of λ, f
 ″(0)  decreases for both 

solutions. The range of S for the existence and the 

non-existence of the dual solutions for different 

values of λ is given in Table 1. It can be easily seen 

from Fig. 2 and Table 1 that with an increament in the 

values of λ, the range of S where the similarity 

solutions exist, also increases. Here, the enhancement 

in the existing range of similarity solution due to slip 

is physically realistic. For increasing slip at the 

boundary, the generation of vorticity at the sheet is 

slightly reduced and therefore, to contain the vorticity 

within the boundary layer the required adequate 

suction can be taken smaller. Hence, the similarity 

solution is possible for smaller values of S as well in 

the presence of the slip. 

 Dual velocity profile f
 ′(0) for various positive 

values of λ is shown in Fig. 3 and it is found that with 

increasing values of λ , the velocity profile increases 

in the first solution case while showing opposite 

behaviour in the case of second solution i.e. 

decreases. Figure 4 shows the effect of on the velocity 

profile. It is found that the dimensionless velocity 

profile increases with the increasing value of S for the 

first solution while for the second solution it 

decreases with increasing of S. 

 Dual temperature profile for various values of λ 

and S are shown in Figs 5 and 6, respectively.  

Figure 5 shows that with increase of λ, the 

temperature profile and thermal boundary layer 

thickness decrease for the first solution while increase 

for the second solution. Figure 6 shows that 

temperature at a point decreases with the increase of S 

for the first solution while for the second solution it 

increases. Furthermore, it is very important to note 

that the temperature profiles with λ and S likely just 

give reverse phenomena in comparison with those of 

the velocity profiles.  

Table 1 — Range of S for the existence and the non-existence 

of the dual solutions with several values of λ 

 

Slip parameter  

λ 

Dual solutions 

(Existence) 

No similarity  

solution 

 

−0.272 S≥2.041 S<2.041 

−0.2 S≥1.636 S<1.636 

−0.1 S≥1.432 S<1.432 
0 S≥1.312 S<1.312 

0.1 S≥1.227 S<1.227 
0.2 S≥1.162 S<1.162 
0.3 S≥1.108 S<1.108 
0.5 S≥1.0298 S<1.0298 
0.75 S≥0.958 S<0.958 
1.0 S≥0.904 S<0.904 
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Fig. 3 — Dual velocity profile
 
for various values of λ 
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Fig. 4 — Dual velocity profile for various values of S 
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Fig. 5 — Dual temperature profile for various values of λ 
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Fig. 6 — Dual temperature profile for various values of S 
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Fig. 7 — Dual temperature profile for various values of Pr 

1 1.2 1.4 1.6 1.8 2
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

S
- θ

'(
0

)

 

 

λ����
�

λ����
�

λ����
� 

λ����
� 

λ����
 �

λ����
 �

�����������	����������������

����������	�����������������

�������
���

�������
���

�#�����


�������
��"!

 
 

Fig.8 — Dual temperature gradient at the sheet −θ ′(0) with S for 

various values of λ 
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Fig. 9 — Dual temperature gradient at the sheet −θ ′(0) with S for 

various values of Pr 

 

 The dual temperature profile for various values of 

Pr is shown in Fig. 7. It is observed that in the 

presence of the slip, the thermal boundary layer 

thickness of both first and second solutions reduces 

significantly due to increase of Pr. Since the Prandtl 

number is inversely proportional to the thermal 

conductivity, thus the fluids with the lower Pr have 

higher thermal conductivities and consequently, the 

heat diffusion is faster in this case. On the other hand, 

for higher Pr fluids the heat diffusion slows down. 

 Analysis of the dual nature of the temperature 

gradient −θ ′(0) at the sheet (i.e. rate of heat transfer 

from the surface to the fluid) against S for various 

values of λ and Pr are shown in Figs 8 and 9, 
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respectively. It is observed that in the both cases of 

the first and second solutions, the rate of heat  transfer 

at the sheet i.e.  −θ ′(0)  increases with increasing of λ 

and Pr. Consequently, from both these figures it is 

found that the rate of heat transfer at the sheet 

increases with increasing values of S in both cases of 

first and second solutions. 

 

6 Conclusions 

 The objective of this paper is to analyze the effect 

of the slip parameter as well as suction parameter on 

the dual character of the similarity solution of three 

dimensional boundary layer flow of an 

incompressible fluid and heat transfer over a 

permeable axisymmetric shrinking sheet. By using 

suitable similarity transformations, the governing 

equations are transformed into non-linear ordinary 

differential equations and then solved numerically 

using the shooting technique with Runge-Kutta forth 

order method. The study reveals that with increasing 

values of slip parameter, the range of the suction 

parameter where the similarity solutions exist, also 

increases. Also, the present investigation explores that 

the dual solutions not only exist for negative values of 

slip parameter � (mentioned in the previous literature) 

but also for positive values of �. Moreover, for 

increasing values of S and �, the thickness of the both 

momentum and thermal boundary layer is decreasing 

for the first solution while for second solution it is 

increasing. The skin friction coefficient decreases 

with increasing values of slip parameter for both 

solutions. Whereas for increasing values of suction 

parameter it increases for first solution and decreases 

for the second solution. The rate of heat transfer at the 

sheet increases for both the solutions with increasing 

values of slip parameter, Prandtl number and suction 

parameter. 
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