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The yrast spectra, quadrupole moments, octupole moments, quadrupole deformation parameters (β2), non-axiality 

parameters (γ), root mean square radii for protons and neutrons, occupation probabilities, and B(E2) transition probabilities 

are calculated for 226-230Th in Cranked Hartree-Bogoliubov (CHB) framework. These calculations have been performed by 

employing one body octupole potential field added to a quadrupole-quadrupole plus pairing model of residual interaction 

operating in a reasonably large valence space outside the 164Pb core. Our calculations reproduce qualitatively the observed 

yrast spectra in 226Th to 230Th up to spin 20+. The calculated results indicate that the quadrupole deformation increases and 

non-axiality of all these nuclei decreases along the yrast states. The results of octupole moments indicate that the octupole 

collectivity decreases as one moves from 226Th to 230Th. The observed increase in deformation in going from 226Th to 230Th 

is due to the increase in the occupation of low k components of (2g9/2)π and (1j15/2)υ orbits. 
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1 Introduction 

 The region of light actinides exhibits signs of stable 

octupole deformation and offers a real challenge for 

nuclear structure models. The level schemes of even-

even positive parity bands of some thorium isotopes 

have been extended up to higher spin. Azmal et al
1
. 

and Cocks et al
2
. have studied the spectroscopy of  

226-230
Th isotopes by using multi-nucleon transfer 

reactions. They systematically studied the rotational 

alignment properties of thorium isotopes and revealed 

the information concerning the role of the octupole 

phonon and the onset of stable octupole deformation 

with increasing rotational frequency. The difference 

in alignment between the positive and negative parity 

bands in thorium nuclei shows that 
228,230

Th behave 

like octupole vibrators, in contrast with 
226

Th which is 

octupole-deformed in character.  

 On the theoretical side, a variety of approaches 

have been applied to investigate the role of octupole 

degrees of freedom in actinide mass region. Zamfir 

and Kusnezov
3
 studied even-even Ra-Th nuclei in the 

framework of the spdf interacting boson model and 

found that while the properties of the low-lying states 

can be understood without stable octupole 

deformation, higher spin states (I≥12) in some of 

these nuclei suggest that the octupole deformation 

develops with increasing spin. Diab
4
 investigated the 

low-lying collective levels in 
224-234

Th in the 

framework of the interacting boson approximation 

(IBA-1) and successfully reproduced the ground state 

and octupole bands. Bizetti and Sona
5
 investigated the 

nuclear octupole and quadrupole excitations close to 

axial symmetry in the thorium isotopic mass chain. 

They predicted a phase transition in the octupole 

mode around a stable quadrupole deformation. In the 

present paper, the octupole degree of freedom in the 

pairing-plus quadrupole–quadrupole model of 

interaction to investigate the yrast bands of 
226-230

Th, 

has been incorporated. 

 The results are obtained for the yrast states, 

intrinsic quadrupole moments, quadrupole 

deformation parameter (β2), intrinsic octupole 

moments, non-axiality parameter (γ), root mean 

square radii for protons (rπ) and neutrons (rv), 

occupation probabilities and B(E2) transition 

probabilities. For the variational calculation of the 

yrast levels, we have employed the pairing plus 

quadrupole-quadrupole interaction operating in a 

reasonably large valence space spanned by 3p1/2, 3p3/2, 

2f5/2, 2f7/2, 2g9/2, 1h9/2, 1i11/2, 1i13/2, and 1j15/2 orbits for 

protons as well as neutrons. The nucleus 
164

Pb is 

considered as an inert core.  
 

2 Theoretical Framework  
 

2.1 One and two body parts of the Hamiltonian  

 The single particle energies (SPEs) that we have 

employed are (in MeV) (2f7/2)=0, (1h9/2)=0.5, 

(1i13/2)=1.9, (3p3/2)=2.4, (2f5/2)=2.9, (3p1/2)=3.9, 
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(2g9/2)=5.8, (1i11/2)=7.5, and (1j15/2)=7.8. This set of 

input SPEs is taken from Nilsson diagram
6
. Apart 

from this, one-body octupole force field is generated 

by the potential: 
 

( )
3

3 †
3,  

3

1 ( , )OCT i j

ij

V i r Y j a a
µ

µ

µ

θ φ
+

=−

∝ −� �  …(1) 

 

 The two-body effective interaction that we have 

employed is pairing-plus quadrupole-quadrupole (qq) 

type
7
. The pairing part can be written as: 

 

† †

 
( / 4)P i i

j

jj

i

j i
V G S S a a a a= − �  …(2) 

 

where i denotes the quantum numbers (nljm). The 

state i  is same as i but with the sign of m reversed. 

Here Si is the phase factor (−1) 
j-m

. The q-q part of the 

interaction is given by:  
 

2 2 † †( 1)
2

qq i j l k

ijkl

V i q k j q l a a a a
υ

υ υ

υ

χ
−= − −��  …(3) 

 

where the operator 
2qυ  is given by: 

 

1

2
2 2 216

 ( , )
5

q r Yυ υ

π
θ φ

� �
= � �
� �

. …(4) 

 

 The strengths of interaction parameters of the like-

particle neutron-neutron (�nn) or proton–proton (�pp) 

and the neutron–proton (�np) have been parametrized 

by the relations
8
: 

 

( ) 1.4 4
(10 11) A MeV  ann ppχ χ − −= = − − ×  …(5) 

 

( )1.7np nn ppχ χ χ= × =  …(6) 

 

with G = (18-21)/A. 

Here a( / )mω= �  is the oscillator parameter. 

 
2.2 Review of CHB Theory 

 All that can be done here now is to put together the 

important definitions and formulae which are often 

used. 

Consider the many-body Hamiltonian : 

 

† † †1
| | , ,

4
i i A i j l k

i ijkl

H i T i a a i j V k l a a a a= +� �  …(7) 

where T is the kinetic energy and one body part of the 

Hamiltonian and VA is an effective nucleon-nucleon 

interaction. The indices ‘ijkl’ span the active valence 

single-particle states contained in the model space, 

and ai
†
 and ai are the particle creation and annihilation 

operators, respectively. 

 The cranking model for number non-conserving 

wave functions replaces H by: 
 

 xH H N Jλ ω′ = − −  …(8) 
 

where the angular frequency ω  is adjusted so that: 
 

( 1)xJ J J= +  …(9) 

 

and the chemical potential λ is adjusted so that the 

number operator N has the correct expectation value. 

The quasi-particle transformations: 
 

† †( )i ij j ij j

j

q U a V a= +� �� ������

 

are chosen so that : 
 

†
0 i i i int

i

H E E q q H′ ′= + +� � ����� 

 

where Ei are the quasi-particle energies and Hint  is the 

neglected quasi-particle interaction. Eqs (8) and (11) 

result in the HB equations appropriate for a rotating 

frame: 
 

* *

 
      

   ( )

x

x

X J U U
E

V VX J

ω

ω

− ∆� �� � � �
=� �� � � �� �−∆ − − � � � �� �

 … (12)  

 

 This energy matrix is referred to as HB 

Hamiltonian. The Hartree Hamiltonian, the Hartree 

potential and the pair potential are defined by:  
 

( )ij ijX T λ= − + Γ   …(13) 
 

� | | �ij A lk

kl

ik V jl=�   …(14) 

 

1
| |

2
ij A kl

kl

ij V kl t∆ = �   …(15) 

 

The density matrix and the pairing tensor are: 
 

† †
0 0� | | ( )ij j i ija a V Vφ φ= =   …(16) 

 

†
0 0 ( )ij j i ijt a a V Uφ φ= =   …(17) 
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where 0|φ  is the quasi-particle vacuum. 

 The Hamiltonian in a rotating frame contains 

Cranking term −ωJx which violates many of the 

symmetries of Eq. (7), consequently the densities 

calculated from the Cranking Hamiltonian given in 

Eq. (8) are neither time reversal invariant nor 

triaxiality symmetric. Therefore, The CHB 

Hamiltonian will not be block diagonal if it is 

expressed in the spherical single-particle basis 

|k�=|nljmτ�. No reduction in the dimension of the 

eigen value equation occurs and the solution of CHB 

equations becomes a formidable task. It was, 

however, Goodman
9
 who suggested several 

simplifications, which result, provided one exploits 

certain symmetries associated with the Jx operator. It 

is convenient to separate the Harmonic oscillator 

states into two sets. The first set contains the states 

k , which are restricted to have 
1

2
km

� �
−� �

� �
 equal to 

an even integer. The second set contains the time 

reversed set k kT≡ , which have 
1

2
km

� �
−� �

� �
 equal 

to an odd integer. The symmetries preserved by 

 
ˆ

xJ are parity, reflection through yz plane and rotation 

of � about the x-axis. Since  � PR (�)x x= , only two of 

these symmetries, are independent. If the 

conventional jm  basis is used, then the reflection 

symmetry σx does not reduce the dimension of the 

CHB equations. To take advantage of the symmetry 

σx, Goodman
9
 introduced a single particle basis that 

simultaneously block diagonalizes the Jx term and the 

Hartree and pair potentials. Since σx
2
 =−1 when acting 

on one fermion states, the operator σx has only two 

eigen values, −i and +i with corresponding sets of 

eigen vectors that are denoted by K  and K . 

Because σx and  
ˆ

xJ  are commuting normal operators, 

it follows that there are no non-zero matrix elements 

of  
ˆ

xJ  between eigen states of σx belonging to 

different eigenvalues of σx. That is: 
 

K | | K 0xJ ′	 � =   …(18) 
 

 The eigen vectors are easily determined, since σx in 

the two-dimensional basis K,K  has the 

representation: 

0 1
�   

1 0
x i

� �
= − � �

� �
  

 

so that the eigen vectors are: 
 

1
K   k k

2

 �= +
� 

  …(19a) 

 

1
K   k k

2

 �= − +
� 

  …(19b) 

 

Notice that K  KT= . Since Jx and T anti-commute, 

it follows that: 
 

K| |K   K| |Kx xJ J′ ′= −   …(20) 

 

thus Jx is block diagonal in the σx. basis 

1 2 1 N2NK ,  K  , ,  K  ,  K ,  K ,  K… …   

 

0
   

0

x

x

x

j
J

j

� �
= � �

−� �
  …(21) 

 

If the quasi-particle operators are chosen as: 
 

† †

K
(  )i iK K iK

K

q U a V a= +�  …(22) 

 
† †( )iK iK Ki

K

K
q U a V a= +� � �  … (23) 

 

it can then be demonstrated that the CHB equations 

reduce to the form: 

 

1 1

† *
1 2

         
( )

i

i

x

x i

i

iUX
E

X V

j

j

U

V

ω

ω

� � � �− ∆� �
=� � � �� �� �� � � �−∆ − +� �� � � �

� �

� �   …(24) 

 

* ** †
2 1

* *
1 1

  ( ) �
          

� ( )

i ix
i

x
i i

U UX j
E

X j V V

ω

ω

� � � �� �+ � � � �=� �� �� � � �− −� � − −� � � �

� �
� �

�� �
� �

  

 …(25) 
 

where X now includes the Fermi energy λ. Goodman
9
 

demonstrated that if self-consistent symmetry σx is 

employed, the HB quasi-particle vacuum at any 

angular velocity may be written as: 
 

( )† † †
0  0a U V a aα β β β β

α β α

φ
≠

= +∏ ∏   …(26) 



RAM et al.: MICROSCOPIC NON-AXIAL STUDY OF EVEN-EVEN 226-230Th ISOTOPES 

 

 

325 

where  
 

† †
K K

K

a D aβ β=�   …(27) 

 

† †
K K

K

a D aβ
β

=�  …(28) 

 

so that �  and β  are eigen vectors of xσ  with 

eigen values, –i and +I, respectively. 
 

2.3 Matrix Elements of Hatree Hamiltonian 

 Let K  denotes a state in the ‘direct’ basis and 

K  the state in the ‘conjugate’ basis; that is: 

 

1
2

 ( , )  ( 1)  ( , )  
j

K j m j m
α

α α α α

+
 �= + − − ≡ +� �� 
  

1/2
| | ( , ) ( 1) | ( , ) |

j
K j m j mα

α α α α
+
 �� = � − − − � ≡ −��   …(29) 

 

then the matrix elements of the Hartree potential is: 
 

1 2, 21
|,  ,|K K K V K

β

β βΓ =�  

    
3, 4

3 4

3 2 4  K K1
K K

K K |V|K ,K  �,=��  … (30) 

 

Denoting the Γ  matrix constructed in the K-basis for 

protons by , p+Γ  we have : 
 

3 4

,

,

, 

,

,

| |

| |

| |

| |

p p p p
p

p p p p
p

p
p n p n

K K n

p n p n
n

V

V

V

V

ρ

ρ

ρ

ρ

+

−

+

+

−


 �+ + + +
� �
� �+ + − + −� �Γ = � �

+ + + + +� �
� �

+ + − + −� �� 

�  …(31) 

 

where p over + (or − ) implies ‘proton’ and n implies 

‘neutron’ 
 

1 2

2
*

1 , 2| |  p K KK K V D Dβ β β

β

ρ+ =�  …(32) 

 

2.4 Pairing Matrix Element 

 The pairing matrix element is: 
 

1 1 2 31 2

2 31

2 4

4

2 21 

2 43

1

1

,  

4 | |

p K KK
K KK

pK
K

V D D D

K D K K V K K

β ββ

β

β β β β =

×

� � �

�
 

 …(33) 

 The matrix elements of the pairing interaction are 

given by: 

 

( ) 1 3 1 3

1 2 3 4 2 1 4 3

1 1 2 2 3 3 4 4

, ,

, | | , ( 1)
j j m m

p

j j j j m m m m

j m j m V j m j m G

δ δ δ δ

+ − −

− −

= − −

×
 

 

 Employing above equation we obtain, after some 

algebraic manipulations  

 

1 1 11

1

2 2 22

2

1 21 2,  , ( 1)

( 1)

l

p K K
K

l

K K
K

V G D D

D D

α

α

β β

β β

β β β β
� �
� �= − −
� �
� �

� �
� �× −
� �
� �

�

�
…(34) 

 

where 1K  is given by Eq. (29) 

 

3 Results and Discussion 
 

3.1 Results of calculation for 226-230Th isotopes 

 In Table 1, the results of CHB calculation using 

pairing plus quadrupole-quadrupole model are 

presented. The values for the two components of 

quadrupole moments 2
0Q  and 2

2Q  are presented 

separately for protons and neutrons. It turns out from 

our calculation that 2 2
2 2Q Q− =  and 

2 2
1 1Q Q 0−= = . From Table 1, it is observed that 

the 2
0
�,�

Q  values show an increase as one moves 

along the yrast states for a particular nucleus. Besides 

this, these values also show an increasing trend with 

increase in neutron number. However, the trend 

exhibited by 2
2
�,�

Q  values for a particular nucleus 

as one moves up along the yrast states is decreasing. It 

is observed from the columns 4
th

 and 6
th
 of Table 1 

that for 
226-230

Th, the 2
2
�

Q  values show a slow 

decrease along the yrast states as well as with neutron 

number whereas, the 2
2
�

Q  values show an increase 

with neutron number. The values of β2 presented in 

Table 1 are calculated from the values of intrinsic 

quadrupole moments by using the standard formula 

suggested by Bohr
10

. The values of β2 parameter for 
226-230

Th are 0.216, 0.227, 0.228 that are found to be in 

satisfactory agreement with the values 0.228(7), 

0.2301(39), 0.2441(15), respectively, adopted by 
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Raman et al
11

. The values for the two components of 

octupole moments 3
3Q  and 3

1Q  are presented 

separately for protons and neutrons. It turns out from 

our calculations that 3
3Q− = 3

3Q  and 3
1Q− = 3

1Q  

and 3
2Q− = 3

2Q  = 3
0Q = 0. From Table 1, it is 

observed that 3
3,1

�,�
Q  values show a decrease as one 

moves from 
226

Th to 
230

Th, predicting thereby 

decrease in octupole collectivity with  neutron number  

that is consistent with the experimental 

observations
1,2,12-15

. So, the present CHB results with 

octupole interaction predict 
226-230

Th to have octupole 

collectivity. The parameter γ  is a measure of the 

degree of non-axiality present in a nucleus. The 

values of γ are calculated from the 2
2Q  values by 

Table 1 — Results of CHB calculations for 226-230Th. Here 2
0Q

π
 2

0Q
ν

� �
� �
� �

, 2 2
2 2Q Q

π ν

� �
� �
� �

 and 3
1Q

π
 3

1Q
ν

� �
� �
� �

, 3
3Q

π
 3

3Q
ν

� �
� �
� �

 

gives the contribution of the protons (neutrons) to the components of quadrupole and octupole moment operators,respectively. The 

quadrupole and octupole moments are calculated in units of ‘b’ and ‘b3/2’, respectively, where b is barn. The 11th column gives the 

calculated and adopted values of quadrupole deformation parameter (β2). The adopted values are given in square bracket and taken 

from Ref.11. The 12th column gives the value  γ , the degree of non-axiality. The values rπ(rυ) given in columns 13th and 14th are the 

root mean square radii for protons (neutrons) in fermis 
 

Nuclei I 2
0Q

π
 2

2Q
π

 2
0Q

ν
 2

2Q
ν

 3
1Q

π
 3

3Q
π

 3
1Q

ν
 3

3Q
ν

 2β  γ  rπ  rυ  
 

          [0.228(7)]    
226Th 0 2.18 1.08 2.96 3.35 0.025 0.021 0.053 0.088 0.216 -58.93 6.47 6.62 

 2 2.18 1.08 2.96 3.35 0.025 0.022 0.053 0.087  -58.86 6.49 6.62 

 4 2.19 1.08 2.96 3.34 0.025 0.023 0.052 0.085  -58.69 6.51 6.62 

 6 2.20 1.07 2.96 3.34 0.025 0.023 0.052 0.084  -58.45 6.53 6.62 

 8 2.21 1.06 2.96 3.32 0.025 0.024 0.051 0.082  -58.15 6.55 6.62 

 10 2.23 1.05 2.97 3.31 0.025 0.024 0.051 0.080  -57.78 6.57 6.62 

 12 2.25 1.04 2.97 3.29 0.025 0.024 0.050 0.079  -57.37 6.59 6.62 

 14 2.26 1.03 2.98 3.27 0.025 0.025 0.050 0.077  -56.90 6.61 6.63 

 16 2.27 1.01 2.98 3.25 0.025 0.025 0.049 0.075  -56.47 6.62 6.63 

 18 2.28 1.00 2.99 3.23 0.025 0.025 0.049 0.073  -55.92 6.64 6.63 

 20 2.30 0.98 3.00 3.19 0.026 0.025 0.049 0.071  -55.43 6.65 6.63 

          [0.2301(39)]    
228Th 0 2.48 0.99 3.29 3.52 0.020 0.017 0.042 0.067 0.227 -56.59 6.47 6.65 

 2 2.48 0.99 3.29 3.52 0.019 0.017 0.042 0.066  -56.56 6.49 6.65 

 4 2.49 0.98 3.28 3.51 0.019 0.017 0.042 0.065  -56.45 6.51 6.65 

 6 2.49 0.98 3.30 3.51 0.019 0.018 0.041 0.064  -56.28 6.53 6.65 

 8 2.50 0.98 3.31 3.50 0.019 0.018 0.041 0.063  -56.01 6.54 6.65 

 10 2.50 0.97 3.31 3.48 0.019 0.018 0.041 0.061  -55.77 6.56 6.65 

 12 2.51 0.97 3.32 3.47 0.019 0.019 0.041 0.060  -55.47 6.57 6.65 

 14 2.52 0.96 3.33 3.45 0.019 0.019 0.041 0.058  -55.11 6.59 6.65 

 16 2.53 0.96 3.34 3.45 0.019 0.019 0.041 0.057  -54.71 6.60 6.65 

 18 2.54 0.95 3.36 3.43 0.019 0.019 0.041 0.055  -54.30 6.61 6.65 

 20 2.55 0.94 3.37 3.40 0.019 0.020 0.041 0.053  -53.74 6.62 6.65 

          [0.2441(15)]    
230Th 0 2.78 0.88 4.04 3.97 0.020 0.017 0.040 0.066 0.228 -49.97 6.50 6.69 

 2 2.79 0.87 4.08 3.40 0.020 0.017 0.039 0.064  -49.96 6.51 6.70 

 4 1.80 0.87 4.15 3.41 0.020 0.017 0.039 0.062  -49.92 6.52 6.70 

 6 2.81 0.87 4.21 3.41 0.022 0.017 0.038 0.058  -49.86 6.53 6.70 

 8 2.82 0.86 4.30 3.41 0.022 0.017 0.037 0.053  -49.70 6.53 6.70 

 10 2.84 0.85 4.41 3.40 0.022 0.017 0.036 0.045  -49.64 6.54 6.70 

 12 2.84 0.85 4.41 3.38 0.022 0.017 0.036 0.044  -49.57 6.54 6.70 

 14 2.84 0.85 4.42 3.37 0.022 0.017 0.035 0.042  -49.43 6.55 6.70 

 16 2.84 0.84 4.43 3.36 0.022 0.017 0.035 0.041  -49.26 6.57 6.70 

 18 2.84 0.84 4.43 3.34 0.022 0.017 0.034 0.039  -49.07 6.57 6.70 

 20 2.84 0.84 4.43 3.33 0.022 0.017 0.034 0.038  -48.83 6.56 6.70 
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using the formula suggested by Bohr
10

 and these 

values show a decrease with spin and neutron number. 

In the last two columns of Table 1, the root mean 

square radii for protons and neutrons are presented. It 

can be seen that the values of rυ are almost constant 

along the yrast states whereas rπ values show a  

slight increase as one moves along the yrast states. 

Thus, the results on 2
0
�,�

Q  and γ show that axial 

quadrupole collectivity increases and non-axiality 

decreases for these nuclei in going up along the yrast 

states. The results on octupole moments seem to 

predict that octupole collectivity is maximum for 
226

Th then it shows a decrease as one moves from 
226

Th to 
230

Th.  

 
3.2 Subshell occupation number 

 In Table 2, the subshell occupation numbers for 

protons and neutrons are presented. A careful 

examination of Table 2 shows that the occupation 

numbers of various proton orbits are spread over 3p1/2, 
3p3/2, 2f5/2, 2f7/2, 2g9/2, 1h9/2, 1i11/2, 1i13/2 and 1j15/2 

orbits. Here the occupation probabilities of 3p1/2, 2f5/2 

and 2g9/2 orbits increase whereas the occupation 

probabilities of 2f7/2, 1h9/2 and 1i13/2 orbits show a 

slow decrease as one moves from 
226

Th to 
230

Th. The 

increase in the occupation of (2g9/2)π orbit from 0.02 

to 0.20 causes an increase in deformation in going 

from 
226

Th to 
230

Th. 

 In case of occupation numbers for neutrons, the 

occupation probability of 1j15/2 orbit increases from 

4.01 to 7.29 units as one moves from 
226

Th to 
230

Th 

causing thereby an increase in quadrupole 

deformation. This increase in quadrupole deformation 

is also observed experimentally as the energy of  

12
E +  decreases to a value of 0.053 MeV in 

230
Th from 

its value of 0.072 MeV in 
226

Th.  

Table 3 — Comparison of theoretical and experimental  

1 1( 2;0 2 )B E
+ +→  values in  226-230Th. 

 

1 1( 2;0 2 )B E
+ +→

 
(in e2b2) 

Nucleus 
Exp. Th. 

 
226Th 6.85(42)a 6.16 
228Th 7.06(24)a 6.89 
230Th 8.20(25)b 7.03 
aData is taken from Ref.11 
bData is taken from Ref.17 
 

 

3.3 B(E2) transition probabilities 

 We have examined the goodness of the CHB wave 

function by calculating the ( )1 12;0 2B E
+ +→  values. It 

has been shown
16

 that the B(E2) values are related to 

the deformation parameter β2 by the relation: 
 

( )
2

2
20

1 1 2

3
2;0 2

4

Z R
B E β

π
+ + 
 �×

→ = ×� �
� 

 

 

where R0 is 1.2 A
1/3

 fm and B(E2) values are in units 

of e
2
b

2
.  

 In Table 3, a comparison of the observed 

( )1 12;0 2B E
+ +→  values with the calculated ones is 

presented by substituting in above relation the non-

axial values of β2 for 
226-230

Th given in Table 3. Here 

the effective charge is taken as Z/A i.e effective 

charge of proton (eπ) is (1+Z/A) and effective charge 

of neutron (eυ) is Z/A. From Table 1, one notes that 

the calculated 1 1( 2;0 2 )B E
+ +→  values of 

226-228
Th 

reproduce the experimental values within 

experimental error limits. 

 
3.4 Yrast spectra 

 In Fig. 1, the yrast spectrum of 
226-230

Th calculated 

up to spin I=20
+ 

is compared with the experimental 

data
1,2,17

. It is observed that the experimental yrast 

Table 2 — Values of occupation probabilities of the ground state for 226-230Th 

 
Protons 

Nucleus 3p1/2 3p3/2 2f5/2 2f7/2 2g9/2 1h9/2 1i11/2 1i13/2 1j15/2 
226Th 0.17 0.85 0.35 2.50 0.02 2.13 0.001 1.98 0.001 
228Th 0.28 0.80 0.55 2.26 0.07 2.08 0.004 1.93 0.007 
230Th 0.37 0.84 0.73 2.08 0.20 1.97 0.002 1.80 0.001 

Neutrons 
226Th 1.35 3.52 5.31 7.89 5.11 9.91 4.15 12.74 4.01 
228Th 1.42 3.49 5.33 7.86 5.38 9.89 4.28 12.33 6.00 
230Th 1.43 3.10 4.75 7.57 6.01 9.58 5.87 12.37 7.29 
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energies are reproduced well up to spin I=20
+
 for  

226-230
Th, respectively. The experimental value of 

20
E +  

of 
226-230

Th are 3.08 MeV, 2.83 MeV, 2.84 MeV and 

their theoretical values are 2.96 MeV, 2.56 MeV and 

2.48 MeV, respectively.  

 
4 Conclusions 

 To summarize, the CHB calculations performed by 

employing one body octupole potential field added to 

a quadrupole-quadrupole plus pairing model of 

residual interaction operating in a reasonably large 

valence space outside the 
164

Pb core appear to give a 

good description of positive parity yrast states of 

even-even 
226-230

Th isotopes. It confirms theoretically 

the non-axial and octupole nature of these isotopes. It 

is found that the quadrupole deformation increases 

and non-axiality of all these nuclei decreases along 

the yrast states. From the results of octupole 

moments, one infers that the octupole collectivity 

decreases as one moves from 
226

Th to 
230

Th. From the 

results of occupation numbers, it is found that the 

increase in collectivity as one moves from 
226

Th to 
230

Th could be linked with an increase in the 

occupation of (2g9/2)π and (1j15/2)υ orbits. The 

observed deformation increase in going from 
226

Th to 
230

Th is due to increase in the occupation of  

(1j15/2)υ  orbit from 4.02 to 7.29 and the increase in the 

occupation of (2g9/2)π  orbit from its value of 0.02 to 

0.20. The experimental B(E2) transition probabilities 

are reproduced for 
226-228

Th by taking the value of 

effective charge as Z/A.  
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