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The phase shift analysis of any nucleon- nucleon scattering is an important aspect for both local and non-local potentials 
to know different properties of any nuclear system. The Phase Function Method (PFM) effectively determines the scattering 
phase shifts for both local and non local potentials. We use PFM for the local extended Hulthén potential and solve the first 
order phase equation to generate scattering phase shifts for different states of (α-n) and (α-p) systems. We demonstrate the 
merit of our approach by computing the phase shift data with and without some correction factors and comparing it with 
standard experimental results. 
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1 Introduction 
Hulthén potential1 is a short ranged potential widely 

applied in nuclear, particle and atomic physics for its 
exact solvability for s-wave when used in Schrödinger's 
equation2. Further we can generate approximate 
solutions for higher partial waves from this s-wave via 
several mathematical approach- super symmetric 
factorization methods3-6 being one of the most used 
one. This is a local, energy independent exponential 
type potential which is well fitted for representation of 
the electromagnetic interaction (Coulomb) for small 
values of r, and decreases rapidly at large distances. 
Hence, the atomic Hulthén potential is termed as the 
screened Coulomb potential. An extended version of 
this Hulthén potential has also been proposed by 
Eğrifes, Demirhan, and Büyükhiliç7 which has been 
applied successfully8,9 for some physical applications. 
Hall et al.10. in his recent works calculated the exact 
normalized solutions of the Schrödinger equation for 
such a deformed extended Hulthén potential. 

In this present text we calculate the phase shifts of 
(α-n) and (α-p) scattering for 2&1,0  partial wave 
states using this Extended Hulthén potential via 
phase- function method (PFM)11. We compare the 
scattering phase shifts of the aforementioned states 
with experimental data12 to study the efficiency of the 
potential under consideration. 

2 Extended Hulthén potential 
The attractive extended Hulthén potential is 

expressed as 
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The terms )(    and )( 22    stand for the 
range and depth parameters. The quantities   and 
  have the dimensions of inverse length. The quantity 
q  is a new parameter with condition 1 > q  > 0. Similar 
potential variety has been used with quite success for 
various applications7,8. Extended Hulthén potential is 
similar to ordinary Hulthén potential as for the shift of 
r→ r+log(q/(   )) it essentially becomes Hulthén 
potential of Eckart class13. For generation of 
scattering phase shifts of 0l  partial waves of both 
(α-n) and (α-p) systems, we add an exponentially 
screened centrifugal barrier term as advocated by 
several authors14-17 through supersymmetry (SUSY) 
formalism with pure Hulthén potential. This is 
expressed as  
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The centrifugal barrier term does not explicitly 
depend on the nature of the potential used. In general, 
for exponentially screened potentials, a screened 
centrifugal barrier is always applied for having 
analytical solutions18-23. Thus, a screened barrier is 
adapted here to deal with the extended Hulthén potential. 
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So the effective potential for (α-n) system yields 
 

).()()( rVrVrV lq
n

eff    … (3) 
 

Putting different   values in )(rVl  one gets the 
effective potentials for different states. 

For (α-p) systems, we added atomic Hulthén potential 
to establish the electromagnetic interaction part  
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where V0 and a are two parameters representing strength 
and screening radius of the potential. For large screening 
radius, the atomic Hulthén potential behaves as the 
Coulomb potential such that the product aV0  remains 
constant and one has constkaV  20 , where  is 
the Sommerfeld parameter. Finally, the expression of 
effective potential for different partial waves of (α-p) 
system is expressed as. 
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3 Computation of phase shifts 

Phase Function Method (PFM) is a technique 
developed by Calogero11 to effectively determine the 
scattering phase shifts for both local and non-local 
potentials24-26. For local potential, like the extended 
Hulthén plus the atomic Hulthén potential, the phase 
equation is given by27-32 

 
)(ˆ),()[cos(),( 1 krjrkrVkrk lleffl  

2)](ˆ),(sin krrk ll   ,  … (6) 
 
where )(rVeff  stands for the potential of the 

respective state. The other functions )(ˆ krjl  and 

)(ˆ krl  are the Riccati- Bessel functions33 which 
take up different values for different  . Solving this 
first order, non linear differential equation from the 
origin to asymptotic region with the initial condition 

0)0,( kl , we compute phase shifts for different 
states of (α-n) and (α-p) systems. We then finally 
compare our phase parameters with standard data and 
represent our findings in Fig. 1-4. 

4 Results and discussion  
To fix the parameters of different states for both 

the systems we give free running to our parameters 
in the numerical routine to reproduce correct phase 
parameters. The value of V0a for (α-p) system is 

11117.0 fm . The screening radius a is considered 
to be 20 fm . The adjustable parameter q  takes up 
different values for different systems and the values 
will be mentioned later. With the parameters in  
Table 1 we have computed elastic scattering phase 
shifts for various states, represented by 2/1 , 

2/1 , 2/3 , 2/3  and 2/5 , using 
22 92.252/ MeVfm , where  is the reduced mass 

of the system. The phase equation is solved by 
running r  from zero to 7 fm  (asymptotic region) 

 
 

Fig. 1 ⸻ Phase shift for (α-n) 1/2(+) and 1/2(-) states. 
 

 
 

Fig. 2 ⸻ Phase shift for (α-n) 3/2(-) and 3/2(+) state. 
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in steps of 0.01 fm . The saturation in phase shifts is 
reached beyond 7 fm .  

In Figs. 1-6 we present our phase data for 1/2(+), 
1/2(-) and 3/2(-), 3/2(+) and 5/2(+) states of (α-n) and 
(α-p) systems for extended Hulthén potential. The 
newly introduced parameter q  takes the values 0.88, 

0.8, 0.895, 0.92, 0.92 and 0.915, 0.856, 0.96, 0.96, 0.8 
for s, p, and d states of (α-n) and (α-p) systems 
respectively.  

Looking closely into Figs. 1-6 it is noticed that the 
phase parameters for our proposed extended Hulthén 
potential model reproduce the qualitative nature of the 
phase shifts for 1/2(+), 1/2(−), 3/2(−), 3/2(+) and 
5/2(+) states of the (α − n) and (α − p) systems, 
respectively. For the (α − n) system we observe that 
our phase values 2/1 , 2/1 , 2/3  and 2/5
differ more or less symmetrically on either side of 
ELab = 2.4 MeV, ELab = 8.72 MeV, ELab = 2.25MeV 
and ELab =16.78 MeV, respectively while those for the 
(α − p) system are ELab =5.0 MeV, ELab=6.02 MeV,  
ELab =4.7 MeV and ELab =16.53 MeV respectively. 

 
 

Fig. 3 ⸻ Phase shift for (α-n) 5/2(+) state. 
 

 
 

Fig. 4 ⸻ Phase shift for (α-p) 1/2(+) and 1/2(-) states 
 

Table 1 ⸻ Parameters for the (alpha-n) and (alpha-p) systems. 

States (alpha-n) system (alpha-p) system 
1fm  1fm  1fm  1fm  

1/2(+) 0.949 1.135 1.011 1.135 
1/2(-) 1.975 2.52 1.927 2.49 
3/2(-) 2 2.45 2.47 3.12 
3/2(+) 1.2 1.26 1.055 1.15 
5/2(+) 1.25 1.43 1.8 2.05 

 
 

Fig. 5 ⸻ Phase shift for (α-p) 3/2(-) and 3/2(+) state. 
 

 
 

Fig. 6 ⸻ Phase shift for (α-p) 5/2(+) state. 
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However, the phase shifts for 3/2(+) states of both the 
systems are in good agreement with ref12. Therefore, 
our central potential model needs an energy-
dependent correction term on either side of the point 
of coincidence with experimental data12 for 1/2(+), 
1/2(−), 3/2(−) and 5/2(+) states to have a better 
agreement with standard data12. To simulate the effect 
of such correction in the phase data we have identified 
and incorporated an energy-dependent correction 
factor to the concerned interactions to achieve good 
agreement with the experiment12. These correction 
factors read as: 

for (α-n) systems-  
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for (α-p) systems- 
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Here   is an adjustable parameter. For (α-n) 

system these are 0.42, 0.12, 0.12, 0.22 and the same 
for (α-p) system are 3.6, 1.12, 0.78, 0.15 respectively. 
The phase parameters with correction factors are also 
depicted in respective figures and are designated by

2/1
c , 2/1

c , 2/3
c  and 2/5

c  . Our potential model 
with correction factors can well account the phase 
shift values up to 15 MeV for all the s, p and d-states 

except the 3/2− state beyond 3.5 MeV. Our peak 
values for 3/2− state fall below the experimental 
result by 50. Beyond this laboratory energy our phase 
parameters reproduce slight lower values than the 
standard data12. A variation of about 10% in phase 
parameters is observed in the case of Ahmad et al.36 
while the same is within 8% only in our case from the 
standard data12. The overall agreement of the present 
results with those of Ahmad et al.36, Mazur et al.37, 
Cattapan et al.38, Dohet-Eraly et al.39 & Bhoi et al.40 is 
noteworthy. 

We portray the potentials, with and without 
correction factors, in Figs. 7-11 for both (α-n) and  
(α-p) systems in the energy unit by multiplying the 
effective potential with the factor 2/2  MeVfm2. 

These are denoted by 2/1
effV , 2/1

effV , 2/3
effV , 2/3

effV , 
2/5

effV and 2/1
)(CeffV , 2/1

)(CeffV , 2/3
)(CeffV , 2/5

)(CeffV  respectively. 
For clarity of presentation the potentials are plotted up 
to 5.5 fm  It is observed that repulsive cores develop 
in our potentials for various partial wave states except 
1/2(+) state of the (α-n) system. The s-wave potential 
for the (α-n) system is purely attractive in nature 
while the same for the (α-p)   system possesses a hard 
core followed by a strong attractive part. This quasi 
hard core originates due to repulsive electromagnetic 
interaction. The p and d-wave potentials for both  
(α-n) and (α-p) systems possess repulsive cores due to 
addition of centrifugal barriers as well as 
electromagnetic interaction followed by attractive  
parts. With the addition of energy-dependent 
correction factors to the respective potentials the 
depth of the potentials alter to fit proper phase data to  

 
 

Fig. 7 ⸻ Potentials for (α-n) system 1/2(+) and 1/2(-) states. 
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produce a fairly good agreement with experimental 
phase shift values12. Our observation is fully 
consistent with the findings of Reichstein & Tang41 in 
studying the effective local potential of (α-n) system 
obtained from a nonlocal one in microscopic studies. 
However, in this study, the hard cores do not possess 
too much physical significance as we are concerned 
with the low energy scattering where the tail parts of 
these potentials play an important role. 
 
5 Conclusions 

In the present text we have calculated of scattering 
phase shifts of different states (1/2(+), 1/2(-) 3/2(+) 
3/2(-) and 5/2(+) for both (α-n) and (α-p) systems 
using extended Hulthén potential as the nuclear part 
of the interaction without any  spin- orbit and tensor 
interactions. The s, p and d wave potentials for both 
the systems with suitable q  values show correct 
trends of nuclear potentials. Quasi hard cores develop 
in the potentials except for the 1/2(+) state of the (α-n) 
system and die out gradually with the distance. With 
an additional energy-dependent correction factor to 
the potential good quantitative agreement in the phase 
parameters was achieved. Thus, the energy-dependent 
correction factors to the interactions, to some extent, 
have the ability to reproduce the effects of the non-
central parts of the nuclear interactions. The He5 
system (likewise Li5) is an unbound system, its 
ground state being a narrow p-wave resonance in the 
3/2- and 1/2- channel. A critical phase shift analysis of 
Hoop & Barshall42 regarding (α-n) scattering show 
two resonances namely 1/2- and 3/2- at 1 and 4 MeV. 
These two states are, in fact, the meta-stable states of 

 
 

Fig. 8 ⸻ Potentials for (α-n) system 3/2(-) and 5/2(+) states. 
 

 
 

Fig. 9 ⸻ Potentials for (α-n) and (α-p)  systems 3/2(+) state. 
 

 
 

Fig. 10 ⸻ Potentials for (α-p) system 1/2(+) and 1/2(-) states. 

 
 

Fig. 11 ⸻ Potentials for (α-p) system 3/2(-) and 5/2(+) states. 
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the (α-n) system. Our Hamiltonian contains only 
nuclear and electromagnetic central potentials with 
an energy-dependent term. On the other hand, 
Quaglioni & Navrátil43 calculated (n-α) and (p-α) 
phase shifts by combining the resonating-group 
method and a microscopic description of the nucleon 
clusters with more realistic N3LO and CD-Bonn NN 
potentials while Lee & Robson44, in the folding 
model approach, also generated a nucleon-nucleus 
optical potential with the inclusion of spin-orbit and 
tensor forces. They achieved an excellent description 
of alpha-nucleon s-wave phase shifts while those for 
the p-wave the same have insufficient magnitude and 
splitting with respect to experimental results12. Our 
p-wave results reproduce much better results than 
those of Ref.37 and are in reasonable agreement with 
the experimental data12. The overall quality of the 
consistency between the theoretical and 
experimental data, in the energy region under 
consideration, is noteworthy. 

We conclude by noting that our three parameter 
central potential with an energy-dependent correction 
factor in conjunction with phase function method may 
be good enough to treat nucleon-nucleus or light 
nucleus-nucleus systems.  
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