

Indian Journal of Pure & Applied Physics Vol. 58, April 2020, pp. 207-212

Cluster radioactivity in superheavy nuclei ²⁹⁹⁻³⁰²120

Nagaraja A M^{a,b}, H C Manjunatha^{a*}, N Sowmya^{a,c} & S Alfred Cecil Raj^b ^aDepartment of Physics, Government College for Women, Kolar 563 101, India ^bDepartment of Physics, St. Joseph's College, Tiruchirapalli 620 002, India ^cDeptartment of Physics, BMSIT, Bangalore 560 064, India

Received 17 February 2020

The cluster radioactivity is an unusual decay process observed in superheavy nuclei. When a cluster nuclei are emitted, the residual or daughter nuclei is having doubly magic nuclei or it may be neighbourhood of the same. We have studied cluster radioactivity [⁴He, ⁶Li, ⁹Be, ^{20,22}Ne, ²³N, ²⁴⁻²⁶Mg, ²⁸⁻³⁰Si, ³¹P, ³²⁻³⁴S, ³⁵Cl, ^{36,38,40}Ar, ⁴⁰⁻⁴⁶Ca] in the superheavy nuclei ²⁹⁹⁻³⁰²120 using the nuclear and proximity model. The calculated cluster decay half-lives are compared with that of the other theoretical models such as Univ¹, NRDX², UDL³ and Horoi⁴. From the comparison of different models we have observed that the cluster nuclei with ⁴He, ⁹Be, ²²Ne, ²⁶Mg, ³⁰Si, ³⁴S, ⁴⁰Ca and ⁴⁶Ca are having smaller logarithmic half-lives than the exotic cluster decay modes.

Keywords: Superheavy nuclei, Cluster radioactivity, Exotic cluster decay, Proximity model

1 Introduction

The cluster radioactivity is the process in which nuclei disintegrates into asymmetric heavy combination of fission fragments. It is the process in which it emits light nuclei from the parent nuclei. The cluster radioactivity has been the curiosity of the present consequences. The cluster radioactivity was observed during the year 1984⁵⁻⁷. Only few papers are available on both theoretical and experimental aspects of cluster radioactivity. Experiment⁸⁻¹⁴ becomes crucial in discriminating different theoretical models of cluster radioactivity. The cluster decay is the intermediate of alpha and spontaneous fission. Recent discovery of superheavy elements play a very important role in the material world. The different decay modes of superheavy elements are found in experimental and theoretical works on cluster radioactivity. Ni and Ren² studied alpha decay rates and Xu and Ren³ studied alpha decay using Densitydependent cluster model. Using quantum scattering process Sahu et al.¹⁵ developed general decay formula for cluster radioactivity. Cui et al.¹⁶ employed alpha decay half-lives from the study of different models in the heavy and superheavy region Z=80-118. Santhosh Priyanka¹⁷ studied competition between and spontaneous fission and alpha decay in the superheavy region Z=99-129. Using generalized

*Corresponding author: (E-mail: manjunathhc@rediffmail.com)

density-dependent cluster model, Qian and Ren¹⁸ studied half-lives in the superheavy region. Zhang and Wang¹⁹ used unified description formula to study cluster radioactivity in superheavy region $Z \ge 118$. Previous workers²⁰⁻²⁴ studied exotic cluster decay in heavy and superheavy nuclei.

Using cluster preformation law, Wei and Zhang²⁵ investigated cluster radioactivity in the heavy and superheavy region. Poenaru et al.²⁶ studied branching ratios with respect to alpha decay half-lives in the superheavy region. Dong et al.²⁷ were studied alpha decay half-lives of superheavy nuclei using two potential approach. Previous workers²⁸⁻³⁰ studied the decay properties and half-lives of the different decay modes in the superheavy region Z=121 and 125. Using liquid drop model Wang et al.³¹ studied alpha decay and proton decay half-lives in neutron deficient nuclei. Earlier workers³²⁻⁴⁰ studied different decay modes and the projectile-target combinations to synthesis the superheavy element. Hence, the purpose of our work is to identify cluster radioactivity [⁴He, ⁶Li, ⁹Be, ^{20,22}Ne, ²³N, ²⁴⁻²⁶Mg, ²⁸⁻³⁰Si, ³¹P, ³²⁻³⁴S, ³⁵Cl, ^{36,38,40}Ar, ⁴⁰⁻⁴⁶Ca] in the superheavy nuclei ²⁹⁹⁻³⁰²120. At the end we have compared our work with the Univ, NRDX, UDL and Horoi.

2 Theoretical Framework

The cluster radioactivity is the fission like process in which parent nuclei split into a daughter nuclei and a fragment nucleus. For a spherical daughter nuclei and fragment nuclei, the total potential is written as:

$$V(r) = V_n(r) + \frac{Z_1 Z_2 e^2}{r} + \frac{\ell(\ell+1)\hbar^2}{2\mu r^2} \qquad \dots (1)$$

The nuclear interaction between the two spherical nuclei is given by:

$$V_{n}(r) = 4\pi \gamma b \frac{C_{1}C_{2}}{C_{1} + C_{2}} \phi(\varepsilon) \qquad \dots (2)$$

here b is the nuclear surface width ≈ 1 fm, C_i is the central radii of a nuclei, $\phi(\varepsilon)$ is the universal function⁴⁰ Which depends on $\varepsilon = (r - C_1 - C_2)/b$ and γ is the nuclear surface tension and given by

$$\gamma = \gamma_0 \left[1 - k \left(N - Z \right)^2 / A^2 \right] MeV / fm^2 \qquad \dots (3)$$

where N is the neutron number, Z is the charge number and A is the mass number of parent nuclei. The $\gamma_0 = 0.9517$ and $k = 1.7826^{41}$. The central radii in terms of sharp radius is given as:

$$C_i = R_i - \frac{b^2}{R_i} fm \qquad \dots (4)$$

and the sharp radii is expressed as

$$R_i = 1.28A_i^{1/3} - 0.76 + 0.8A_i^{-1/3} \qquad \dots (5)$$

For cluster radioactivity, the barrier penetrability *P* is evaluated numerically and analytically and it is expressed as:

$$P = \exp\left\{-\frac{2}{\hbar}\int_{a}^{b}\sqrt{2\mu(V-Q)}dz\right\} \qquad \dots (6)$$

where reduced mass $\mu = \frac{A_1 A_2}{A_1 + A_2}$, where A_1 , and A_2

are masses of daughter and emitted cluster, respectively. The turning points *a* and *b* are studied using the following condition V(a) = Q and V(b) = 0. The half-life of cluster radioactivity is given by:

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{\ln 2}{\nu P} \dots (7)$$

where $\upsilon = \frac{\omega}{2\pi} = \frac{2E_{\upsilon}}{h}$, υ is the assault frequency and λ is the decay constant. The empirical vibration

energy is expressed as: $E_v = Q \left\{ 0.056 + 0.039 exp \left[\frac{4 - A_2}{2.5} \right] \right\} \text{ for } A_2 \ge 4 \dots (8)$

3 Results and Discussion

The amount of energy released during the cluster radioactivity is studied using the following equation;

$$Q = \Delta M(A, Z) - \Delta M(A_d, Z_d) - \Delta M(A_c, Z_c) \quad \dots (9)$$

where $\Delta M(A,Z)$ is the mass excess of the parent, $\Delta M(A_d, Z_d)$ is the mass excess of daughter nuclei and $\Delta M(A_c, Z_c)$ is the mass excess of cluster nuclei. In the work, we have used both experimental and theoretical mass excess values available in the literature⁴²⁻⁴⁶. The amount of energy released during the emission of clusters such as 4 He, 6 Li, 9 Be, 20,22 Ne, 23 N, ${}^{24-26}$ Mg, ${}^{28-30}$ Si, 31 P, ${}^{32-34}$ S, 35 Cl, 36,38,40 Ar, and 40-46Ca are plotted as function of mass number of clusters and depicted in Fig. 1. The variation of amount of energy released during cluster radioactivity with the neutron number of cluster is as shown in Fig. 2. From the Figs 1 and 2 it is observed that as the mass number of cluster/neutron number of cluster increases the amount of energy released also increases. It is observed from the two figures that the amount of energy released is higher for ⁴⁰Ca [Z=20, N=20], which may be due to the presence of magic nuclei. We have studied half-lives for different cluster emission such as ⁴He, ⁶Li, ⁹Be, ^{20,22}Ne, ²³N, ^{24,26}Mg, ^{28,30}Si, ³¹P, ^{32,34}S, ³⁵Cl, ^{36,38,40}Ar, and ^{40,46}Ca in the isotopes of ²⁹⁹⁻³⁰²120 as explained in detail in the theoretical frame work. The studied half-lives of different cluster emission with the neutron mass number is presented in Fig. 3. In the present graph, we observed smaller half-lives for the neutron number 2, 5, 12, 14, 16, 18, 20 and 26, which are near or equal to magic number of the nuclei.

We have also studied the logarithmic half-lives of different models such as Univ, NRDX, UDL, Horoi. Figure 4 describes the variation of logarithmic half-lives of different models such as Univ, NRDX, UDL, Horoi and present work with the mass number of cluster in the superhaevy region ²⁹⁹⁻³⁰²120 and it is

Fig. 1 – Variation of amount of energy released during cluster radioactivity with mass number of cluster (A_c) for the isotopes of superheavy nuclei ²⁹⁹⁻³⁰²120

Fig. 2 – A Variation of amount of energy released during cluster radioactivity with the neutron number of cluster for the isotopes of superheavy nuclei $^{299-302}120$.

Fig 3 – A variation of logarithmic half-lives of cluster radioactivity with the neutron number of cluster for the isotopes of superheavy nuclei $^{299-302}$ 120.

Fig. 4 – A comparison of logarithmic half-lives of different decay modes such as Univ, NRDX, UDL, Horoi and present work with the mass number of cluster for the isotopes of superheavy nuclei $^{299-302}120$.

presented in Fig. 4. From the figure we observed that the logarithmic half-lives of cluster emission such as ⁴He, ⁹Be, ²²Ne, ²⁶Mg, ³⁰Si, ³⁴S, ⁴⁰Ca and ⁴⁶Ca are

Fig. 5 – The variation of logarithmic half-lives of different clusters as a function of neutron number for the isotopes of superheavy nuclei $^{299-302}$ 120.

Table 1 – Tabulation of logarithmic half-lives of different cluster	
emission in the isotopes of superheavy nuclei ²⁹⁹⁻³⁰² 120.	

Cluster emission	$\text{Log } T_{1/2}(S)$				
	²⁹⁹ 120	³⁰⁰ 120	³⁰¹ 120	³⁰² 120	
⁴ He	-4.303	-4.633	-4.931	-4.985	
⁶ Li	15.496	19.367	14.292	16.545	
⁹ Be	3.398	4.871	2.662	3.736	
²⁰ Ne	21.509	21.544	21.453	20.840	
²² Ne	14.507	14.474	14.467	14.243	
²³ N	21.301	21.532	21.525	21.555	
^{24}Mg	25.834	26.058	26.195	26.404	
²⁵ Mg	22.472	23.574	22.918	23.663	
^{26}Mg	18.144	18.279	18.493	18.454	
²⁸ Si	25.004	25.391	25.622	25.888	
²⁹ Si	29.590	30.033	30.400	30.519	
³⁰ Si	25.630	26.806	26.429	27.341	
³¹ P	21.630	21.960	22.315	22.485	
³² S	28.785	29.370	29.812	29.550	
³³ S	34.816	35.482	35.392	35.948	
³⁴ S	30.652	32.019	31.870	32.339	
³⁵ Cl	26.475	26.649	27.198	27.570	
³⁶ Ar	33.982	34.449	34.994	34.966	
³⁸ Ar	39.980	40.465	40.788	41.397	
⁴⁰ Ar	31.475	31.788	32.185	32.402	
⁴⁰ Ca	25.957	26.271	26.573	26.669	
⁴² Ca	33.634	32.999	33.887	33.332	
⁴³ Ca	36.351	36.862	37.389	37.747	
⁴⁴ Ca	33.247	34.351	34.154	35.156	
⁴⁵ Ca	30.887	31.291	31.696	31.978	
⁴⁶ Ca	24.002	24.308	24.582	24.770	

having smaller half-lives compared to other cluster emission in the isotopes of superheavy nuclei ²⁹⁹⁻³⁰²120. From this study, it is found that the cluster decay half-lives are smaller for the cluster nuclei whose mass number or neutron numbers are nearer/equal to magic number. We have also studied the variation of logarithmic half-lives of cluster emission with the neutron number and we presented the same in Fig. 5. From the figure we have observed that as the mass number of cluster increases, the logarithmic half-life increases with the increase in neutron number. We have tabulated corresponding values of logarithmic half-lives and amount of energy released in the isotopes of superheavy nuclei ²⁹⁹⁻³⁰²120 are tabulated in Tables 1 and 2. From the tables and graphs, it is found that alpha decay (⁴He) is having smaller half-lives compared to other cluster decay mode.

Table 2 – The tabulation of amount of energy released during different cluster emission in the isotopes of superheavy nuclei ²⁹⁹⁻³⁰²120.

Cluster emission	Q(MeV)				
	²⁹⁹ 120	³⁰⁰ 120	³⁰¹ 120	³⁰² 120	
⁴ He	13.105	13.395	13.665	13.715	
⁶ Li	8.923	7.823	9.313	8.603	
⁹ Be	20.792	19.612	21.422	20.512	
²⁰ Ne	72.384	72.334	72.463	73.342	
²² Ne	76.361	76.415	76.427	76.797	
²³ N	82.049	81.692	81.703	81.657	
²⁴ Mg	91.301	90.951	90.738	90.414	
²⁵ Mg	93.188	91.38	92.45	91.237	
²⁶ Mg	97.276	97.03	96.642	96.712	
²⁸ Si	101.941	101.284	100.895	100.449	
²⁹ Si	110.484	109.735	109.122	108.923	
³⁰ Si	113.815	111.706	112.377	110.764	
31 P	117.819	117.173	116.484	116.155	
³² S	120.91	119.853	119.064	119.531	
³³ S	126.132	124.982	125.136	124.186	
³⁴ S	130.03	127.522	127.792	126.946	
³⁵ Cl	134.543	134.196	133.108	132.378	
³⁶ Ar	136.108	135.251	134.262	134.314	
³⁸ Ar	140.573	139.723	139.162	138.112	
⁴⁰ Ar	149.531	148.904	148.116	147.686	
⁴⁰ Ca	154.251	153.569	152.916	152.709	
⁴² Ca	176.112	177.492	175.566	176.766	
⁴³ Ca	163.278	162.261	161.223	160.523	
⁴⁴ Ca	166.243	163.96	164.363	162.325	
⁴⁵ Ca	167.93	167.063	166.2	165.603	
⁴⁶ Ca	177.105	176.371	175.716	175.269	

4 Conclusions

In summary, we have carried out the study of cluster radioactivity in the isotopes of superheavy nuclei ²⁹⁹⁻³⁰²120. We have studied logarithmic halflives for the ground-to ground transitions in the emission of clusters such as 4 He, 6 Li, 9 Be, 20,22 Ne, 23 N, ${}^{24-26}$ Mg, ${}^{28-30}$ Si, 31 P, ${}^{32-34}$ S, 35 Cl, 36,38,40 Ar, ${}^{40-46}$ Ca. We have studied the amount of energy released and logarithmic half-lives in the super-heavy nuclei ²⁹⁹⁻ ³⁰²120. From this study, it is found that the cluster radioactivity half-lives are smaller for the cluster nuclei whose atomic or neutron number are nearer/equal to magic number. The present results are in good agreement with the other models such as Univ, NRDX, UDL and Horoi. From the outcomes of the present work, it emphasizes on the dependence of logarithmic half-lives and Q-values near or equal to the magic number. Hence, the superheavy nuclei ²⁹⁹⁻³⁰²120 are stable against the cluster decay and the dominant decay mode is ⁴He (alpha decay). The present study on the superheavy nuclei ²⁹⁹⁻³⁰²120 finds an important role in the future experiments.

References

- 1 Poenaru D N, Gherghescu R A & Greiner W, *Phys Rev C*, 83 (2011) 014601.
- 2 Ni D, Ren Z, Dong T & Xu C, *Phys Rev C*, 78 (2008) 044310.
- 3 Qi C, Xu F R, Liotta R J & Wyss R, *Phys Rev Lett*, 103 (2009) 072501.
- 4 Horoi M, Brown B A & Sandulescu A, J Phys G: Nucl Part Phys, 30 (2004) 945.
- 5 Rose H J & Jones G A, *Nature*, 307 (1984) 245.
- 6 Price P B, Ann Rev Nucl Part Sci, 39 (1989) 19.
- 7 Hasegan D & Tretyakova S P, in Particle Emission from Nuclei, Vol II, Ed Poenaru D N & Ivascu S M, CRC, Boca Raton, FL, USA, 1989.
- 8 Ogloblin A A, Bonetti R, Denisov V A & Guglielmetti A, *Phys Rev*, C61 (2000) 034301.
- 9 Blendowske R & Walliser H, Phys Rev Lett, 61 (1988) 1930.
- 10 Zamyatnin Y S, Kadmenski S G, 57, *Sov J Nucl Phys*, (1994) 1981.
- 11 Poenaru D N, Schnabel D, Greiner W, Mazilu D & Gherghescu R, *At Data Nucl Data Tables*, 48 (1991) 231.
- 12 Pik-Pichak G A, Fiz Y, Sov J Nucl Phys, 44 (1986) 1421.
- 13 Poenaru D, Nuclear Decay Modes, Ed Poenaru D N, Institute of Physics, Bristol, UK, 1996.

- 14 Bonetti R, Carbonini C, Guglielmetti A, Hussonnois M, Trubert D & Naour C L, Nucl Phys A, 686 (2001) 64.
- 15 Sahu B, Paira R & Rath B, Nucl Phys A, 908 (2013) 40.
- 16 Cui J P, Xiao Y, Gao Y H & Wang Y Z, *Nucl Phys A*, 987(2019) 99.
- 17 Santhosh K P & Priyanka B, Nucl Phys A, 940 (2015) 21.
- 18 Qian Y & Ren Z, *Phys Lett B*, 738 (2014) 87.
- 19 Zhang Y L & Wang Y Z, Phys Rev C, 97 (2018) 014318.
- 20 Warda M, Zdeb A & Robledo L M, *Phys Rev C*, 98 (2018) 041602.
- 21 Routray T R, Nayak J & Basu D N, *Nucl Phys A*, 826 (2009) 223.
- 22 Gupta R K & Greiner W, Int J Mod Phys E, 3 (1994) 335.
- 23 Blendowske R & Walliser H, Phys Rev Lett, 61 (1988) 1930.
- 24 Kaur A, Sawhney G, Sharma M K & Gupta R K, Int J Mod Phys E, 27 (2018) 1850043.
- 25 Wei K & Zhang H F, Phys Rev C, 96 (2017) 021601(R).
- 26 Poenaru D N, Gherghescu R A & Greiner W, *Phys Rev C*, 85 (2012) 034615.
- 27 Sun X D, Guo P & Li X H, Phys Rev C, 93 (2016) 034316.
- 28 Qian Y & Ren Z, Phys Rev C, 90 (2014) 064308.
- 29 Zdeb A, Warda M & Pomorski K, *Phys Rev C*, 87 (2013) 024308.
- 30 Santhosh K P & Nithya C, Phys Rev C, 97 (2018) 044615.
- 31 Wang Y Z, Cui J P, Zhang Y L, Zhang S & Gu J Z, *Phys Rev C*, 95 (2017) 014302.
- 32 Manjunatha H C, Sowmya N, Sridhar K N & Seenappa L, *J Radio Anal Nucl Chem*, 314 (2017) 991.
- 33 Manjunatha H C & Sowmya N, Nucl Phys A, 969 (2018) 68.
- 34 Manjunatha H C & Sowmya N, Int J Mod Phys E, 27 (2018) 1.
- 35 Manjunatha H C, Sridhar K N & Sowmya N, Phy Rev C, 98 (2018) 024308.
- 36 Sridhar K N, Manjunatha H C & Ramalingam H B, *Phys Rev C*, 98 (2018) 064605.
- 37 Manjunatha H C, Sridhar K N & Sowmya N, Nucl Phys A, 987 (2019) 382.
- 38 Sowmya N & Manjunatha H C, Bulg J Phys, 46 (2019) 16.
- 39 Sowmya N & Manjunatha H C, Proc DAE Symp Nucl Phys, 63 (2018) 200.
- 40 Sowmya N & Manjunatha H C, Braz J Phys, 49 (2019) 874.
- 41 Bocki J, Randrup J, Swiatecki W & Tsang C, Ann Phys, 105 (1977) 427.
- 42 https://www-nds.iaea.org/RIPL-3.
- 43 Möller P, Sierk A J, Ichikawa T & Sagawa H, *At Data Nucl Data Tables*, 109 (2016) 1.
- 44 Manjunatha H C, Chandrika B M & Seenappa L, *Mod Phys* Lett A, 31 (2016) 1650162.
- 45 Wang M, Audi G, Wapstra A H, Kondev FG, MacCormick M, Xu X & Pfeieffer B, *Chin Phys C*, 36 (2012) 1603.
- 46 Manjunatha H C & Sowmya N, *Mod Phys Lett A*, 34 (2019) 1950112.