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In the present study, the solution of Dirac equation for Yukawa potential including the Coulomb-like potential tensor 

interaction term has been investigated. In order to obtain the solution of the problem, Yukawa potential has been expanded 

by using Taylor extension to the power of seventh and brought out its simple from. The energy eigenvalues and the 

corresponding wave functions are obtained using the Ansatz method. The deuteron mass has also been reported by 

considering the effects of hyperfine interactions on the relativistic energy spectra of nucleon. The obtained result shows that 

deuteron mass is found to be in good agreement with the experimental value.  
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1 Introduction  

 Solutions of relativistic wave equations play an 

important role in many areas of physics. Dirac 

equation which describes the spin 1/2 particles is 

solved to obtain complete information about the 

motion of these particles. In particular, the Dirac 

equation has been used in solving many problems of 

nuclear and high-energy physics. It is well known that 

the exact energy eigenvalues of the boundstate play 

an important role in quantum mechanics. Recently, 

there has been an increased interest in searching for 

analytic solution of the Dirac equation
1-11

. In recent 

years, tensor couplings have been used widely to 

study the nuclear properties
12-19

 and they were 

introduced into the Dirac equation
20,21

 by substitution 

of ˆ. ( )P P im xU rωβ→ −
� �

. 

 

2 Yukawa Potential 

 The screened Coulomb potential, also known as the 

Yukawa potential in atomic physics and the Debye–

Huckel potential in plasma physics, is of interest in 

many areas of physics. It was originally used to model 

strong nucleon–nucleon interactions due to meson 

exchange in nuclear physics by Yukawa
19

. It is also 

used to represent a screened Coulomb potential due to 

the cloud of electronic charges around the nucleus in 

atomic physics or to account for the shielding by outer 

charges of the Coulomb field experienced by an 

atomic electron in hydrogen plasma. However, the 

Schrödinger equation for this potential cannot be 

solved exactly. Hence, various numerical and 

pertubative methods have been devised to obtain the 

energy levels and related physical quantities
22

. The 

generic form of this potential is given by: 

 

( ) ( )
g

U x V x
x

= − 0g >  
…(1) 

 

that 
 

( ) kx
V x e

−=  
… (2) 

 

 In this part we expand the Yukawa potential in its 

meson clouds, x a= , by using Teylor extension to the 

power of seventh. 

 
2

2( ) [ ( ) ( )
2!

ka ka kag k
U x e ke x a e x a

x

− − −= − − − + −
 

   

3 4 5
3 4 5( ) ( ) ( )

3! 4! 5!

ka ka kak k k
e x a e x a e x a

− − −− − + − − −  

   

6 7
6 7( ) ( ) ...]

6! 7!

ka kak k
e x a e x a

− −+ − − − +   …(3) 

 

We can reduce Eq. (3) to: 

 
6 5 4 3 2( ) LU x ax bx cx dx ex fx h

x
= − + − + − + −   …(4) 

 

Now, we have the general Yukawa equation, that a, b, 

c, d, e, f, h and L are:  
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7

7!

k
a =  

6 67 7

7! 7!
b k k

� �
= − +� �

� �
 

5 5 521 6 1

7! 6! 5!
c k k k

� �
= + +� �
� �

 

4 4 4 435 15 5 1

7! 6! 5! 3!
d k k k k

� �
= − + + +� �

� �
 

3 3 3 3 3 335 20 10 6 3 1

7! 6! 5! 4! 3! 2!
e k k k k k k

� �
= + + + + +� �
� �

  

2 2 2 2 2 221 15 10 6 3 1

7! 6! 5! 4! 3! 2!
f k k k k k k

� �
= − + + + + +� �

� �
 

7 6 5 4 3 1
2

7! 6! 5! 4! 3! 2!
h k k k k k k

� �
= − + + + + + +� �

� �
 

7 6 5 4 3 1
2

7! 6! 5! 4! 3! 2!
L

� �
= − + + + + + +� �

� �
  …(5) 

 

3 Exact Analytical Solution of the Dirac Equation 

for Yukawa Potential 

 The Dirac equation has been solved under the 

Yukawa potential in the presence of a Coulomb-like 

tensor potential (Eq. (4)). We anticipate the answer 

and then obtain the parameters for highest nuclei, 

deuteron. A deuteron consists of a neutron and a 

proton. Let us assume one nucleon is fixed and 

another nucleon is moving around the center of mass. 

At last by using single particle model, the effects of 

one pion exchange for single nucleon have been 

investigated. Dirac equation under an attractive scalar 

potential S, a repulsive vector potential V and a tensor 

potential U in the relativistic unit
23-25

 ( 1c= =� ) is 

given by: 
 

ˆ. ( ) .H P m S V i xUα β βα= + + + −
�� �

   …(6) 

 

 We have V S∆ = −  and V S� = + . The Dirac 

equation can be solved exactly for the cases 0∆ =  and 

0� = . 0

0

i

i

σ
α

σ

� �
= � �
� �

�
�

�

 

and 0

0

I

I
β

� �
= � �

−� �

 are the usual 

Dirac matrices where I is 2 2×  unitary matrix and 

i
σ
�

are Pauli three vector matrices: 

 

1

0 1

1 0
σ

� �
= � �
� �

,
2

0

0

i

i
σ

−� �
= � �
� �

,
3

1 0

0 1
σ

� �
= � �

−� �

.  

 

 The upper and lower components of Dirac spinor 

with 
AΨ  and 

B
Ψ  have been indicated.Expressing the 

Dirac matrices in terms of the Pauli matrices we 

obtain the following coupled equations
26,27

 : 

. ( ) . ( )A B A BP V S m i xU x Eσ σΨ + − − Ψ + Ψ = Ψ
�� �

…(7a) 

 

. ( ) . ( )B A B AP V S m i xU x Eσ σΨ + + + Ψ − Ψ = Ψ
�� �

…(7b) 

 
 We assume that V, S and U are radial potentials. 

Using the identity: 

 

( )
( )( ) ( )

2 2

.x .x
.P .x .P ix i .L

x x x

σ σ
σ σ σ σ

∂� �
= = − +� �

∂� �

� � � �
� � �� � � � �

  …(8) 

 

with Eqs (7a) and (7b) we find the following second 

order differential equations for 
AΨ  and 

BΨ : 

 

2 2 2

( )

.
4 2

( ) 2

( )( )
( )

A A

A

A
A

d

dU U dx
P U U

dx x E m

d

S Ldx
U

E m

d

dx
E m E m

E m x

� �∆� �
� �� �
� �� �Ψ + + + + Ψ
+ − ∆� �

� �
� �

� �∆� �
� �� �� �� �� �+ + Ψ� �
+ − ∆� �� �

� �
� �

∆� �
� � ∂Ψ� �− = + − ∆ + −� Ψ
+ − ∆ ∂

�

� �
  

 …(9a) 

 

2 2 2

( )

.
4 2

( ) 2

( )( )
( )

B B

B

B
B

d

dU U dx
P U U

dx x E m

d

S Ldx
U

E m

d

dx
E m E m

E m x

� ��� �
� �� �
� �� �Ψ + − − − Ψ
− −�� �

� �
� �

� ��� �
� �� �� �� �� �+ − + Ψ� �
− −�� �� �

� �
� �

�� �
� � ∂Ψ� �+ = + − ∆ − −� Ψ
− − ∆ ∂

�

� �

  

 …(9b) 

 

where S
�

 stands for the 1/ 2σ
�

 spin operator and L
�

 

for orbital angular momentum operator. The 

Hamiltonian operator commutes with the total angular 

momentum operator which is given by J L S= +
�� �

 and 

with the parity operator. Therefore, the eigenfunctions 

defined by Hamiltonian can be expressed as: 
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( )

( )
ˆ( )

( )
ˆ( )

lnk

jmk

njmk

lnk

jm k

g x
i x

x

f x
x

x
−

� �
Φ� �

� �Ψ =
� �Φ� �
� �

   …(10) 

 

where ˆ( )l

jmk xΦ  denotes the spin spherical harmonics. 

The quantum number k is related to l and j as follows: 

 

1 1( 1)
2 2

11

22

l j j l

k

j ll j

� � �
− + = − + = +� �	
	 � �

= 

� �	 = −= + +� �	 � ��

   …(11) 

 

For spin spherical harmonics, we have: 

 

( )
ˆ. l l

jmk jm kxσ −Φ = Φ
�

 …(12) 

 

Eqs (9a) and (9b) reduce to a set of coupled equations 

for the radial wave functions gκ and f�: 

 
2

2

2 2

( 1) 2
( )

( )
( )

( )( )g ( )

k

k

k

d k k k dU
U U g x

dx x x dx

d

d kdx U g x
E m dx x

E m E m x

� �+
− + − −� �

� �

∆

� �
+ + −� �

+ − ∆ � �

= − + − ∆ − −�

   … (13a) 

 

2
2

2 2

( 1) 2
( )

( )
( )

( )( ) ( )

k

k

k

d k k k dU
U U f x

dx x x dx

d

d kdx U f x
E m dx x

E m E m f x

� �−
− + + −� �

� �

�
� �

+ − +� �
− − ∆ � �

= − + − ∆ − −�

   …(13b) 

 

Using the following relations given in Eq. (13): 

 
2 2 2

( ) ( )

2 .

. ( 1)

. ( 1)

l l

jmk jmk

l l

jm k jm k

S L J L S k

L k

L k

σ

σ − −

= − −

Φ = − + Φ

Φ = − + Φ

� �� � �

��

��

   …(14) 

 

for particle of m mass and E energy, we have: 

 

1

2
S V= = �  …(15) 

 
6 5 4 3 2( ) /x ax bx cx dx ex fx h L x� = − + − + − + −  …(16) 

∆x=0 …(17) 
 

1
( )U x

x
= −  …(18) 

 

 We assume the case ( ) ( )S x V x=  
[Refs 28-32] and 

consider ( 1) ( 1)k k l l+ = + , then the upper component 

in Eq. (13a) is as follows: 

 
2

2 2

2 2

( 1) 2 2
( )( ) ( )

( ) ( )

k

k

d l l k
r E m g x

dx x

m E g x

� �+ + +
− −� +� �

� �

= −

 …(19) 

 

As we know in deuteron, two nucleons have in  

D-state, so: 

 
2

2 2

6 5 4 3 2

1 1 1 1 1

1
1 1

( 1) 2 2( 1)
( )

( )

k

k

d l l l
g x

dx x

a x b x c x d x e x

g xL
f x h

x

ε

� + + − +
−� �

� �

� �� �− + − +
� �� �= −� �� �− + −� �� �
� �� �

 …(20) 

 

Therefore, Schrödinger-like equation
32

 as follows:  

 
6 5 4 3 2

1 1 1 1 1

1
1 1

1

2

( )

( 1)

a x b x c x d x e x

L
f x h

g x x

l l

x
ε

� � �− + − +
� �� �
� �� �− + −� �′′ = � �� �
� �

−� �− +
� �� �

 …(21) 

 

By setting 

( ) ( )1 1 1a E m a b E m b+ = + =  

( ) ( )1 1 1 1c E m c d E m d+ = + =  …(22) 

 

( ) ( )1 1 1 1e E m e f E m f+ = + =  

( ) ( )1 1 1 1h E m h L E m L+ = + =  

( )2 2
1E m ε− =  …(23) 

 

 In order to solve the differential equation  

[Eq. (21)], we suppose the following form for the 

wave function: 
 

( ) ( ) ( )Z x
g x M x e=  …(24) 

 

Now, for the functions ( )M x  and ( )Z x , respectively, 

we make use of the following ansatz
28,33,34

: 
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( ) ( )
1

1 if ground state

if 0i

i

M x
x a

υ
υ υ

=

�
	

= 

−	

�
∏ �

 …(25) 

 

( ) 4 3 21 1 1
ln

4 3 2
Z x x x x x xα β η τ δ= − − − − +  …(26) 

 

 For a particular grand angular quantum number γ, 

there are different solutions which are labeled by υ  

(υ  determines the number of the nodes of the wave 

function). By substitution of ( )M x  and ( )Z x  into  

Eq. (24) and then taking the second-order derivative 

of the obtained equation, we can get: 

 

( ) ( ) ( )
( ) ( ) ( )

( )
2 2M x M x Z x

g x Z x Z x
M x

� ′′ ′ ′+
′′ ′′ ′= + +� �

� �� �
 

 …(27) 

 

 We consider the ground state, which is called the  

0 th node solution of the differential equation  

Eq. (27). By equating Eqs (21) and (27) for 0υ = , it 

can be found that: 

 

1

1

1 1

1

2

2

2

2

a

b

a

c

d

α

β

β
η

α
βη

τ
α

=

−
=

−
=

− −
=

 …(28) 

 

( ) 2
11 1 2l hδ ε η δ τ= − = − − −  …(29) 

 

The upper component is as follows: 

 

( ) 1 4 3 2
1 0

1 1 1
exp

4 3 2

l
g x N x x x x xα β η τ− � �

= − − − −� �
� �

 

 …(30) 
 

and another component of wave function is: 

 

( )
( )

( )
( )1 1

ˆ. .P i rU
f x g x

E m

σ σ+
=

+

�� �

 …(31) 

 

By substituting Eq. (30) into Eq. (31), we obtained the 

following equation: 

( )
( )

1
1 0

4 3 2

ˆ.x
.

1 1 1
exp

4 3 2

li d
f x i L U N x

E m dx

x x x x

σ
σ

α β η τ

−− � 
= − −� �+ � �

� �
× − − − −� �

� �

�
��

 …(32) 

 

Therefore, the total wave function is; 
 

( )
3 2

4 3 2

0 ˆ.x 1

1 1 1

4 3 2

1

exp

i
x x x

E m x

x x x

N

x

σ
α β η

α η

ψ
τ

β τ

� �
�

− � 
+ + + +

�
= � �

� �+ � �

� �
− − − −� �
�

� �
� �

×
�

�

 …(33) 

 

Now, we have to obtain parameters a, b, c, d, e, f, h 

and L by using of Eq. (5): 
 

2

3 4

5 6

14 105

440 2555

6846 8659

b a c a
k k

d a e a
k k

f a h a
k k

= =

= =

= =

 …(34) 

 

 We know that 11
0.714( )k fm

x

−= =  by using of  

Eqs (28 and 29), we can get amount of parameters α, 

β, η and τ 
 

1

1

1

1

9.8

83.08

83.08

a

a

a

a

α

β

η

τ

=

= −

=

=

 …(35) 

 

 The bonding energy for deuteron
35

 is reported 

2.224MeV . This is useful for calculate the numeric 

values of parameters in Eq. (35).  
 

( )2 2 2
11 2E m hε η δ τ= − = − − −   …(36) 

 

 By substituting the amounts of Eq. (36) and 1l = , 

we obtained the numeric values of parameters in  

Eq. (35). The parameters are reported in Table 1, 

while the parameters of Yukawa potential are reported 

in Table 2. 
 

4 Effect of the Hyperfine Interaction in Structure 

of Nucleon 

 In this Section we introduce the hyperfine 

interaction potential. The standard hyperfine interaction 
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is used in order to reproduce the splittings within the 

SU(6) − multiplets. As the baryons have spin and 

isospin, in deuteron neutron and proton can interact 

together. Therefore, the complete potential is as 

follows: 
 

( ) ( ) ( ) ( ) ( )int S I SIH x V x H x H x H x= + + +  

  …(37) 
 

 In the present work, we have added the hyperfine 

interaction potentials ( ( )SH x , ( )IH x and ( )SIH x ) which 

yield properties very close to the experimental results. 

By regarding ( )V x as the non-pertubative potential and 

the other terms in Eq. (37) as pertubative ones 

according to this explanation. The spin and isospin 

potential contains a δ -like term which is an illegal 

operator. We have modified it by a Gaussian function 

of the nucleons pair relative distance
36,37

: 
 

( )
( )

2 2/

3

1
.Sx

S S i j

S

H A e S S
σ

πσ

−= �
� �

 …(38) 

 

where Si is the spin operator of the ith nucleon and x is 

the relative nucleon pair coordinate. As and 
Sσ are 

constants
38,39

: 2.87S fmσ =  and 267.4SA fm= .We 

know that the deuteron consists of two nucleons. 

Where 1 indicates the first nucleon and 2 indicates the 

second nucleon. We have: 

 

( )
2 2/ 2 2 2

1 23

1 1

2
Sx

S S

S

H A e S S S
σ

πσ

− � � � = − −� � � �� �
 …(39) 

 Furthermore, we add two hyperfine interaction 

terms to the Hamiltonian nucleon pairs
40

 similar to 

Eq. (38). 

( )
( )

2 2/

3

1
.Ix

I I i j

I

H A e I I
σ

πσ

−= �
� �

 …(40) 

 

where Ii is the isospin operator of the ith nucleon and 

the constants
38,39

 describe like this 3.45I fmσ =  

and 251.7IA fm= . The another one is a spin-isospin 

interaction
40,41

, given by similar Eq.(38). 

 

( )
( )( )

2 2/

3

1
. .SIx

SI SI i j i j

SI

H A e S S I I
σ

πσ

−= �
� � � �

 …(41) 

 

 The fitted parameters are 2.31SI fmσ =  and 
2106.2SIA fm= −  (Refs 38 and 39), where γψ  is the 

perturbed wave function and we write it as: 

 
0 0 0

0 0

intH

E E

γ γ γ
γ γ

γ γ γ γ

ψ ψ ψ
ψ ψ

′ ′ ′

′=

′
′= +

′−
�  …(42) 

 
 The deuteron mass are given by two nucleons 

masses and the eigen energies of the Dirac equation 

E, (E is a function of �, �, �, h, m) with the first order 

energy correction from potential 
intH  can be obtained 

by using the unperturbed wave function Eqs (38, 40 

and 41). The total potential for the ground state as 

well as the other states
41

 can be written as : 

 
* 2

* 2

int

int

H x dx d
H

x dx d

γ γ

γ γ

ψ ψ

ψ ψ

Ω
=

Ω

�
�

 …�43) 

 

 We first assume 0γ = . The potentials can be 

extracted from Eqs (38, 40) and 41): 

 

Table 1 — Best adoption with experimental value is: a1=3.06136, α=1.74967, β=17.146815,  

η=145.362999, τ=141.362999, E(MeV)=2.19020 

 
a1 α β η τ E (MeV) 

 

3.06131 1.74965 -17.146628 145.361420 -141.02227 2.89658 

3.06134 1.74967 -17.146785 145.362749 -141.02356 2.49699 

3.06135 1.74967 -17.146805 145.362915 -141.02372 2.34861 

3.06136 1.74967 -17.146815 145.362999 -141.0238 2.19020 

3.0638 1.74967 -17.147648 145.377006 -141.0234 1.83278 

 

Table 2 — Value of the Yukawa potential parameters 

 

a (fm−7) b (fm−6) c (fm−5) d (fm−4) e (fm−3) f (fm−2) h (fm−1) 
 

0.21961 4.30589 45.24045 265.53556 2159.7519 8109.2235 14362.5603 
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0.10059( )

0.04782( )

0.50053( )

S

I

SI

H MeV

H MeV

H MeV

=

=

= −

   …(44) 

 

Now, we can calculate the deuteron mass according to 

the following formula:  
 

n p inD tM m m E Hυγ+ + += � …(45) 

 

 By substituting
42

 1938(MeV) 4.65( )n pm m fm
−= = = , 

energy eigenvalue ( Eυγ
) and the expectation values of 

intH
 
in Eq. (45), we have 21877.83808 (MeV / )DM c= . 

By comparing the experimental amount of deuteron 

mass ( 11875.612(MeV) 9.29( )DM fm
−= = ) with our 

calculated mass for deuteron, we found that a good 

agreement has been obtained by our model
35

. 
 

5 Conclusions 

 In the present work, a new approach is offered for 

solving of Yukawa potential. We expand this 

potential around of its mesonic cloud that gets a new 

form with great powers and inverse exponent. The 

wave function of the Dirac equation for a new form of 

Yukawa potential has been calculted, including 

Coulomb-like tensor potential. By considering the 

effects of pertubative interaction potential, the 

theoretical and experimental masses are found to be in 

complete agreement. These improvement in 

reproduction of deuteron mass obtained by using a 

suitable form for confinement potential and exact 

analytical solution of the Dirac equation for our 

proposed potential. Finally, one can use this model for 

another nuclei by relativistic or non-relativistic 

equation and get the properties of them and amount of 

g the strength of nuclear force.  
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