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In this paper Dirac equation has been solved approximately for Eckart plus Hulthen potentials with spin symmetry and 
pseudospin symmetry for k≠0. The formula method has been used to obtain the energy Eigen-values and wave functions. The 
energy Eigen-values and wave functions have also been discussed for the special case of modified Eckart plus Hulthen 
potentials for the spin and pseudospin symmetry with formula method. To show the accuracy of the present model, some 
numerical values of the energy levels have been shown. 
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1 Introduction 
In quantum mechanics, it is well known that the 

analytical solutions play a fundamental role, because, 
this solution usually contain all the necessary 
information about the quantum mechanical model 
under investigation1,2. Therefore, one of the interesting 
problems in nuclear and high energy physics is to 
obtain an analytical solution of the Klein - Gordon, 
Duffin- Kemmer - Petiau and Dirac equations for 
mixed vector and scalar potentials3. The study of 
relativistic effects has been always useful in some 
quantum mechanical systems4,5. Therefore, the Dirac 
equation has become the most appealing relativistic 
wave equations for spin-1/2 particles. For example, in 
the relativistic treatment of nuclear phenomena the 
Dirac equation is used to describe the behaviour of the 
nuclei in the nucleus and also in solving many 
problems of high-energy physics and chemistry. For 
this reason, it has been used extensively to study the 
relativistic heavy ion collisions, heavy ion 
spectroscopy and more recently in laser–matter 
interaction (for a review, see6 and references therein) 
and condensed matter physics7,8. 

The idea about spin symmetry and pseudo-spin 
symmetry with the nuclear shell model has been 
introduced in 1969 by Arima et al.1, Hecht and Adler2. 
Spin and pseudospin symmetries are SU(2) symmetries 
of a Dirac Hamiltonian with vector and scalar 
potentials. They are realized when the difference, 

Δ(r)=V(r)−S(r), or the sum, Σ(r)=V(r)+S(r), are 
constants. The near realization of these symmetries 
may explain degeneracy in some heavy meson spectra 
(spin symmetry) or in single-particle energy levels in 
the nuclei (pseudospin symmetry), when these physical 
systems are described by relativistic mean-field 
theories (RMF) with scalar and vector potentials9-11. 
The kind of various methods has been used for the 
analytical solutions of the Klein–Gordon equation and 
Dirac equation such as the super symmetric quantum 
mechanics12-14, asymptotic iteration method15,16 (AIM), 
factorization method17,18, Laplace transform 
approach19, GPS Method20,21 and the path integral 
method22-24, Nikiforov-Uvarov method25-27 and others. 

The Klein-Gordon and Dirac wave equations are 
frequently used to describe the particle dynamics in 
relativistic quantum mechanics with some typical 
potential by using different methods28. For example, 
Kratzer potential29,30, Woods-Saxon potential31,32, Scarf 
potential33,34, Hartmann potential35,36, Rosen Morse 
potential37,38, Hulthen potential39 and Eckart potential40,41. 

In this paper, we attempt to solve analytically Dirac 
wave equation for k≠0 with Eckart plus Hulthen 
potentials for the spin and pseudospin symmetry by 
using the Formula method. We also discuss the special 
case of modified Eckart plus Hulthen potentials for the 
spin and pseudospin symmetry. 
 
2 Review of Formula Method 

The formula method has been used to solve the 
Schrodinger, Dirac and Klein-Gordon wave equations 
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for a certain kind of potential. In this method the 
differential equations can be written as follows42,43: 
 

ψ୬
" ሺݏሻ 

ሺభିమ௦ሻ

௦ሺଵିయ௦ሻ
ψ୬
ᇱ ሺݏሻ 

൫మ௦మାభ௦ାబ൯

௦మሺଵିయ௦ሻమ
ψ୬ሺݏሻ ൌ 0					 …	(1) 

 
For a given Schrödinger-like equation in the presence 
of any potential model which can be written in the form 
of Eq. (1), the energy Eigen-values and the 
corresponding wave function can be obtained by using 
the following formulas, respectively44: 
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or more explicitly as: 
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where, 
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And Nn is the normalization constant. In special case 
where k3 → 0 the energy Eigen-values and the 
corresponding wave function can be obtained as44: 
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where, 
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The solution provides a valuable means for checking 
and improving models and numerical methods 
introduced for solving complicated quantum systems. 

3 Basic Dirac Equations 
In the relativistic description, the Dirac equation of 

a single-nucleon with the mass moving in an attractive 
scalar potential S(r) and a repulsive vector potential 
V(r) can be written as45: 
 

ൣെ݅ܿαෝ ∙   β൫ܿܯଶ  ܵሺݎሻ൯൧ψ୬౨.ౡ ൌ	
ሾܧ െ ܸሺݎሻሿψ୬౨.ౡ  … (9) 
 

Where E is the relativistic energy, M is the mass of a 
single particle and α and β are the 4×4 Dirac matrices. 
For a particle in a central field, the total angular 
momentum J and ܭ ൌ െβ൫αෝ ∙ ܮ  ൯	commute with 
the Dirac Hamiltonian where L is the orbital angular 
momentum. For a given total angular momentum j, the 
Eigen values of the ܭ are k=± (j+1/2) where negative 
sign is for aligned spin and positive sign is for 
unaligned spin. The wave-functions can be classified 
according to their angular momentum j and spin-orbit 
quantum number k as follows: 
 

ψ୬౨.ౡሺݎ. θ. φሻ ൌ
ଵ



ሻݎ୬౨.୩ሺܨ ୨ܻ୫
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	ሻݎ୬౨.୩ሺܩ݅ ୨ܻ୫
୪መ ሺθ. φሻ

൩  … (10)  

 

Where	ܨ୬౨.୩ሺݎሻ and ܩ୬౨.୩ሺݎሻ	are upper and lower 

components, ୨ܻ୫
୪ ሺθ. φሻ	and 	 ୨ܻ୫

୪መ ሺθ. φሻ are the spherical 
harmonic functions. nr is the radial quantum number 
and m is the projection of the angular momentum on 
the z axis. The orbital angular momentum quantum 

numbers l and l represent to the spin and pseudospin 
quantum numbers. Substituting Eq. (10) into Eq. (9), 
we obtain couple equations for the radial part of the 
Dirac equation as follows: 
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		…	(11) 

 

Where Δ(r)=V(r)-S(r) and ∑(r)=V(r)+S(r) are the 
difference and the sum of the potentials V(r) and S(r), 
respectively. 

Under the condition of the spin symmetry, i. e., Δ(r) 
=0, Eq. (11) reduces into: 
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Σሺݎሻሿቁ ሻݎ୬౨.୩ሺܨ ൌ 0																																																		 …	(12) 
 
Under the condition of the pseudospin symmetry, i.e., 
∑(r) =0 Eq. (12) turns to the following form: 
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ቀെ
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We consider bound state solutions that demand the 
radial components45 satisfying	ܨ୬౨.୩ሺ0ሻ ൌ 			୬౨.୩ሺ0ሻܩ
ൌ 0, and ܨ୬౨.୩ሺ∞ሻ ൌ ୬౨.୩ሺ∞ሻܩ ൌ 0. 
 
4 Dirac Equations 
4.1 Solution of Dirac Equations for spin symmetric 

Under the condition of the spin symmetry, i.e.,  
Δ(r) = 0, the upper component Dirac equation can be 
written as: 
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The Eckart40,41 plus Hulthen potentials39 is defined as: 
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  … (15) 
 
and the Eq. (15) can be rewritten in the exponential 
form as: 
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  … (16) 

 
Where the parameters q1, q2, v0 and v1 are positive and 
real parameters, these parameters describe the depth of 
the potential well, and the parameter α is related to the 
range of the potential. 
 

In Fig. 1(a,b), we show the behaviour of the Eckart 
plus Hulthen potentials as a function of r(fm) for three 
screening parameter values α= 0.12, 0.25, 0.45 fm−1 by 
taking the strength parameters q1=q2=v0=v1= 0.8 and 
q1=v0= 0, q2=v1=0.8. It is seen that the potential 
strength decreases with the increasing of the screening 
parameter value. 

Under the condition of the spin symmetry sum of the 
potentials V(r) and S(r) can be written as: 
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   … (17) 
 
By substituting Eq. (17) into Eq. (14), we obtain the 
upper radial equation of Dirac equation as: 
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Equation (18) is exactly solvable only for the case of  
k = 0,-1. In order to obtain the analytical solutions of 
Eq. (18), we employ the improved pekeris 
approximation and replace the spin–orbit coupling 
term with the expression46 that is valid for αr<<1: 
 
ሺାଵሻ

మ
ൎ

ሺାଵሻସమషమಉೝ

ሺଵିషమಉೝሻమ
  … (19) 

 

Using the transformations ൌ exp	ሺെ2αݎሻ Eq. (18) 
brings into the form: 

 
 
Fig. 1 — The behaviour of the Eckart plus Hulthen potentials with r(fm) for different values of the screening parameter α and taking
(a) q1=v0= 0 and q2= v1=0.8 and (b) q1= q2= v0= v1= 0.8. 
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୬౨.୩ܨ
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ηଵݏηሿܨ୬౨.୩ሺݏሻ ൌ 0																																															 …	(20) 
 
Where the parameters η2, η1 and η0 are considered as 
follows: 
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where, δ ൌ
൫ாమିெమర൯

మమ
 and γ ൌ

൫ாାெమ൯

మమ
 

 
Now by comparing Eq. (20) with Eq. (1), we can easily 
obtain the coefficients ki (i = 1, 2, 3) as follows: 
 
k1=k2= k3=1  … (22) 
 
The values of the coefficients ki (i = 4, 5) are also found 
from Eq. (5) as below: 
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Thus, by the use of energy equation (Eq. (2)) for energy 
Eigen-values, we find: 
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  … (24) 
 
And using Eq. (21) we can obtain the energy Eigen-
values equation, in closed form, as: 
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Let us find the corresponding wave functions. In 
reference to Eq. (4) and Eq. (23), we can obtain the 
upper wave function as: 
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where N is the normalization constant, on the other 
hand, the lower component of the Dirac spinor can be 
calculated from Eq. (27) as: 
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ቁ  (27)	…																			ሻݎ୬౨.୩ሺܨ

 
We have obtained the energy Eigen-values and the wave 
function of the radial Dirac equation for Eckart plus 
Hulthen potentials with the spin symmetry for k≠0. 
 
4.2 Solution of Dirac equations for pseudospin symmetric  

For the pseudospin symmetry, i.e., ∑(r) = 0 the 
lower component Dirac equation can be written as: 
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Under the condition of the pseudospin symmetry sum 
of the potentials V(r) and S(r) can be written as: 
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By substituting Eq. (29) into Eq. (28), we obtain the 
upper radial equation of Dirac equation as: 
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By using the pekeris-type approximation and using the 
transformation s = exp(–2αr) we can write the Eq. (30) 
as summarized below: 
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Where the parameters η'2, η'1 and η'0 are considered as 
follows: 
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Now by comparing Eq. (31) with Eq. (1), we can easily 
obtain the coefficients ki (i = 1, 2, 3) as follows: 
 
k1=k2= k3=1 … (33) 
 
The values of the coefficients ki (i = 4, 5) are also found 
from Eq. (5) as below: 
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Thus, by the use of energy equation Eq. (2) for energy 
Eigen-values, we find: 
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And using Eq. (32) we can obtain the energy Eigen-
values equation, in closed form, as: 

ሺ2݊  1ሻ 
ඥሺாିெమሻ


ቂඥ2ሺݒ െ ଵݒ െ ଶሻݍ െ ሺܧ ܿܯଶሻ െ

ඥ2ݍଶ െ ሺܧ ܿܯଶሻቃ 

	ටሺ2݇ െ 1ሻଶ െ
ଶሺாିெమሻ

మమమ
ሺݒଵ െ ଵሻݍ4 ൌ 0												 …	(36) 

 
Using Eq. (13) and Eq. (34) we can finally obtain the 
wave functions as below: 
 

ሻݎ୬౨.୩ሺܩ ൌ ܰᇱሺ݁ିଶ୰ሻ
ቆටିబ

ᇲ ቇ
ሺ1 െ

݁ିଶ୰ሻ
ቆ
భ
మ
ାට

భ
ర
ାమ

ᇲ ାభ
ᇲ ାబ

ᇲ ቇ
ଶܨ ଵ ቆെ݊. ݊  2ቆඥെη

ᇱ 
ଵ

ଶ


	ට
ଵ

ସ
 ηଶ

ᇱ  ηଵ
ᇱ  η

ᇱ ቇ ; 2ඥെη
ᇱ  1. ݁ିଶ୰ቇ								…	(37) 

 
Where N' is the normalization constant, on the other 
hand, the upper component of the Dirac spinor can be 
calculated by Eq. (38) as: 
 

ሻݎ୬౨.୩ሺܨ ൌ
మమ

ሺெమିாሻ
ቀ ௗ
ௗ
െ




ቁ  (38)	…																			ሻݎ୬౨.୩ሺܩ

 
Different between spin symmetry and pseudospin 
symmetry can be written as: 
 

൜
ሺܧ  ଶሻܿܯ ⇔ ሺܧ െܿܯଶሻ
݇ሺ݇  1ሻ ⇔ ݇ሺ݇ െ 1ሻ

																																				…	(39) 

 

Finally, we plot the relativistic energy Eigen-values of the 
Eckart plus Hulthen potentials with spin and pseudospin 
symmetry limitations in Figs 3 and 4. In these figures, we 
plot the energy Eigen-values of spin and p-spin symmetry 
limits versus potential parameters α, v0 and q2. 

In Figs 2 and 3 under the condition of the (a) spin 
and (b) pseudospin symmetries we show the behavior 

 
 
Fig. 2 — Energy spectra in the (a) spin and (b) pseudospin symmetries at various α (fm-1) with parameters ħ=c=1,   v0=2 fm-1, v1=4 fm-1, 
q1=1 fm-1, q2=5 fm-1, m=40 fm-1. 
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of the energy Eigen-values equation for three levels 
energy for some of screening parameter values (α and v0) 
by taking the strength parameters ħ=c=1, v0=2 fm-1, v1=4 
fm-1, q1=1 fm-1, q2=5 fm-1, m=40 fm-1. It is seen that the 
energy Eigen-values increase for spin symmetry and 
decrease for pseudospin symmetry with the increasing of 
the screening parameter value. But in Fig. 4, under the 
condition of the (a) spin and (b) pseudospin symmetries, 
it is seen that the energy Eigen-values decrease for spin 
symmetry and increase for pseudospin symmetry with the 
increasing of the screening parameter value (q2).  
 
5 Some Special Cases 

In this section we consider some special cases of 
interest if we consider q1=v1=0 the modified Eckart 
plus Hulthen potentials can be written: 
 

ܸሺݎሻ ൌ െݍଶ
൫ଵାషమಉ౨൯

ሺଵିషమಉ౨ሻ


௩బ
ሺଵିషమಉ౨ሻ

																								…	(40) 
 

For spin symmetry the Dirac equation can be written as: 
 

ቀെ
ௗమ

ௗమ


ሺାଵሻ

మ


ଵ

మమ
ሾܿܯଶ  ଶܿܯሿሾܧ െ ܧ 

Σሺݎሻሿቁ ሻݎ୬౨.୩ሺܨ ൌ 0																																																		 …	(41) 

And, 
 

Σሺݎሻ ൌ െ2ݍଶ
൫ଵାషమಉ౨൯

ሺଵିషమಉ౨ሻ


ଶ௩బ
ሺଵିషమಉ౨ሻ

																						…	(42) 

 
By substituting Eq. (42) into Eq. (41), we obtain the 
upper radial equation of Dirac equation as: 
 

ቄ ௗ
మ

ௗమ


൫ாమିெమర൯

మమ
െ

൫ாାெమ൯

మమ
ቂെ2ݍଶ

൫ଵାషమಉ౨൯

ሺଵିషమಉ౨ሻ


ଶ௩బ
ሺଵିషమಉ౨ሻ

ቃ െ
ሺାଵሻ

మ
ቅ ሻݎ୬౨.୩ሺܨ ൌ 0																										 …	(43) 

 
Equation (43) is exactly solvable only for the case of  
k = 0,-1. In order to obtain the analytical solutions of 
Eq. (43), we employ the improved pekeris 
approximation and replace the spin–orbit coupling 
term with the expression that is valid46 for αr<< 1. 
 
ሺାଵሻ

మ
ൎ

ሺାଵሻସఈమషమಉ౨

ሺଵିషమಉ౨ሻమ
																																										…	(44) 

 
Using the transformation ݏ ൌ exp	ሺെ2αݎሻ Eq. (43) 
brings into the form: 

 
 

Fig. 3 — Energy spectra in the (a) spin and (b) pseudospin symmetries at various v0 (fm-1) with parameters ħ=c=1, α=0.4fm-1, v1=4fm-1, 
q1=1 fm-1, q2=5 fm-1, m=40 fm-1. 
 

 
 

Fig. 4 – Energy spectra in the (a) spin and (b) pseudospin symmetries at various q2 (fm-1) with parameters ħ=c=1, α=0.4 fm-1, v1=4 fm-1, 
q1=1 fm-1, v0=2 fm-1, m=40 fm-1. 
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୬౨.୩ܨ
" ሺݏሻ 

ሺଵି௦ሻ

௦ሺଵି௦ሻ
୬౨.୩ܨ
ᇱ ሺݏሻ 

ଵ

௦మሺଵି௦ሻమ
ሾηଶݏଶ 

ηଵݏηሿܨ୬౨.୩ሺݏሻ ൌ 0																																															 …	(45) 
 
Where the parameters η2, η1 and η0 are considered as 
follows: 
 

ە
ۖ
۔

ۖ
ۓ ηଶ ൌ

ஔ

ସమ
െ

ஓ

ଶమ
ଶݍ

ηଵ ൌ െ
ஔ

ଶమ


ஓ

ଶమ
ሺݒሻ

η ൌ
ஔ

ସమ


ஓ

ଶమ
ሺݍଶെݒሻ

െ ݇ሺ݇  1ሻ																…	(46) 

 

Where, δ ൌ
൫ாమିெమర൯

మమ
 and γ ൌ

൫ாାெమ൯

మమ
 

 
Now by comparing Eq. (45) with Eq. (1), we can 

easily obtain the coefficients ki (i = 1, 2, 3) as follows: 
 
k1=k2= k3=1  … (47) 
 
The values of the coefficients ki (i = 4, 5) are also found 
from Eq. (5) as below: 
 

ቐ
݇ସ ൌ ඥെη

݇ହ ൌ
ଵ

ଶ
 ටଵ

ସ
െ ሾηଶηଵ  ηሿ

	 … (48) 

 
Thus, by the use of energy equation (Eq. (2)) for energy 
Eigen-values, we find: 
 

ሺ2݊  1ሻ  ටଶஓ

మ
ሺݒ െ ଶሻݍ െ

ஔ

మ
െ ටଶஓ

మ
ଶݍ െ

ஔ

మ


ඥሺ2݇  1ሻଶ ൌ 0	 … (49) 
 
We can obtain the energy Eigen-values equation, in 
closed form, as: 
 

ሺ2݊  1ሻ 
ඥሺாାெమሻ


ቂඥ2ሺݒ െ ଶሻݍ െ ሺܧ െܿܯଶሻ െ

ඥ2ݍଶ െ ሺܧ െܿܯଶሻቃ  ඥሺ2݇  1ሻଶ ൌ 0												 …	(50) 
 
By using Eq. (4), we can finally obtain the wave 
functions with the aid of Eq. (48) as: 
 

ሻݎ୬౨.୩ሺܨ ൌ ܰሺ݁ିଶ୰ሻ൫ඥିఎబ൯ሺ1 െ

݁ିଶ୰ሻ
ቆ
భ
మ
ାට

భ
ర
ାమାభାబቇ

ଶܨ ଵ ቆെ݊. ݊  2ቆඥെη 
ଵ

ଶ


	ට
ଵ

ସ
 ηଶ  ηଵ  ηቇ ; 2ඥെη  1. ݁ିଶ୰ቇ								…	(51) 

Where N is the normalization constant and, the 
lower component of the Dirac spinor can be calculated 
by Eq. (52) as: 

 

ሻݎ୬౨.୩ሺܩ ൌ
మమ

ሺாାெమሻ
ቀ ௗ
ௗ





ቁ   … (52)	ሻݎ୬౨.୩ሺܨ

 
We know that different between spin symmetry and 
pseudospin symmetry can be written as: 
 

൜
ሺܧ  ଶሻܿܯ ⇔ ሺܧ െܿܯଶሻ
݇ሺ݇  1ሻ ⇔ ݇ሺ݇ െ 1ሻ

 … (53) 

 
By using Eq. (53) we could have obtained energy 
Eigen-values and the wave function of the radial Dirac 
equation for the pseudospin symmetry as: 
 

ሺ2݊  1ሻ  ටଶஓᇲ

మ
ሺݒ െ ଶሻݍ െ

ஔ

మ
െ ටଶஓᇲ

మ
ଶݍ െ

ஔ

మ


ඥሺ2݇ െ 1ሻଶ ൌ 0 … (54) 
 
We can obtain the energy Eigen-values equation, in 
closed form as: 
 

ሺ2݊  1ሻ 
ඥሺாିெమሻ


ቂඥ2ሺݒ െ ଶሻݍ െ ሺܧ ܿܯଶሻ െ

ඥ2ݍଶ െ ሺܧ ܿܯଶሻቃ 	ඥሺ2݇ െ 1ሻଶ ൌ 0 … (55) 

 
Also we can finally obtain the wave functions as 
below: 
 

ሻݎ୬౨.୩ሺܩ ൌ ܰᇱሺ݁ିଶ୰ሻ
ቆටିబ

ᇲ ቇ
ሺ1 െ
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ቆ
భ
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ାට

భ
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ାమ

ᇲ ାభ
ᇲ ାబ

ᇲ ቇ
ଶܨ ଵ ቆെ݊. ݊  2ቆඥെη

ᇱ 
ଵ

ଶ


	ට
ଵ

ସ
 ηଶ

ᇱ  ηଵ
ᇱ  η

ᇱ ቇ ; 2ඥെη
ᇱ  1. ݁ିଶ୰ቇ … (56) 

 
Where N' is the normalization constant, on the other 
hand, the upper component of the Dirac spinor can be 
calculated by Eq. (57) as: 
 

ሻݎ୬౨.୩ሺܨ ൌ
మమ

ሺெమିாሻ
ቀ ௗ
ௗ
െ




ቁ  ሻ … (57)ݎ୬౨.୩ሺܩ

 
We have obtained the energy Eigen-values and the 
wave function of the radial Dirac equation for spatially 
modified Eckart plus Hulthen potentials with the 
pseudospin symmetry for k≠0. 
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6 Conclusions 
In this paper, we have discussed analytically the 

solutions of the Dirac equation for Eckart plus Hulthen 
potentials with Spin Symmetry and Pseudospin 
Symmetry for k≠0. We could obtain the energy Eigen-
values and the wave function in terms of the 
generalized Laguerre polynomial functions via the 
formula method. We have also considered the limiting 
cases of spin and pseudo spin symmetry for modified 
Eckart plus Hulthen potentials to obtain the energy 
Eigen-values and the wave function. To show the 
accuracy of the present model, some numerical values 
of the energy levels are shown in Figs 2-4. We can 
conclude that our results are interesting for 
experimental physicists, because the results more 
general and useful to study nuclear scattering, nuclear 
and particle physics. 
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