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 A comprehensive numerical study of a steady two-dimensional stagnation point flow towards a heated linearly 

stretching or shrinking sheet in a porous medium immersed in viscous, incompressible and electrically conducting fluid in 

the presence of a uniform transverse magnetic field is presented. Using similarity transformation, the governing boundary 

layer partial differential equations are converted into non-linear ordinary differential equations and solved by Runge-Kutta 

fourth order method along with shooting technique. Some significant features of the flow and heat transfer in terms of 

velocity and temperature for various values of the governing parameters like, stretching or shrinking parameter, Prandtl 

number, permeability parameter, magnetic parameter and Eckert number are analyzed and presented through graphs while 

skin-friction coefficient and Nusselt number are shown numerically. Results of shear stress and heat transfer rate are also 

compared with the results of previous researchers. 
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1 Introduction  
The practical applications of the dynamics of fluid 

flow over a stretching surface are of utmost 

importance, for example, extrusion of plastic sheets, 

glass blowing, paper production, drying of papers  

and textiles, drawing plastic films, metal spinning, 

continuous casting and spinning of fibers, etc. Since 

the quality of final product depends to a large extent 

on the skin friction coefficient and the surface heat 

transfer rate, so in all of the above cases, a study of 

the flow field and heat transfer can be of significant 

importance. Many researchers have investigated 

various aspects of this problem, such as consideration 

of mass transfer, exponentially stretching surface, 

magnetic field and application to non-Newtonian 

fluids, and similarity solutions have been obtained. 

Initially, Sakiadis
1
 presented the boundary layer flow 

on a moving continuous solid surface. Later, Crane
2
 

studied a closed form solution of the two-dimensional 

flow over stretching sheet by considering the 

stretching velocity proportional to the distance from 

the slot. The problems of the flow through stretching 

surface have been investigated by Wang
3
, Troy et al

4
., 

Vajravelu and Nayfeh
5
, Mukhopadhyay and 

Andersson
6
 and Jat and Chaudhary

7
 in various 

conditions. Recently, Makinde and Aziz
8
, Mahapatra 

et al.
9
 and Chaudhary et al.

10
 analyzed the flow over 

stretching surface in different cases. 

 In comparison to stretching sheet, less work has 

been done on the flow over a shrinking sheet. The 

boundary layer flow due to a shrinking surface has a 

wide area of applications like on a rising shrinking 

balloon, shrinking film and packaging of bulk 

products. On the shrinking surface, the generated 

vorticity is not confined physically within a boundary 

layer and a steady flow is not possible unless adequate 

suction is applied at the surface. Goldstein
11

 presented 

the backward boundary layer flow in converging 

passages. Heat and mass transfer for viscous 

incompressible flow over shrinking surfaces have 

been studied by Miklavcic and Wang
12

, Fang
13

, Fang 

and Zhang
14

 and Lok et al.
15

 

Stagnation point virtually appears in all flow fields 

of engineering and science, so stagnation point flow  

is a topic of significance in fluid mechanics. The 

stagnation region encounters the highest heat transfer, 

the highest pressure and the highest rate of mass 

decomposition. Stagnation point flow has various 

applications in many manufacturing processes in 

industry. The applications include the boundary layer 

along material handling conveyers, the aerodynamic 

extrusion of plastic sheets, blood flow problems, 

processes in the textile and paper industries, flow over 

the tips of rockets, aircrafts, submarines and oil ships. 
—————— 
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The pioneering work in this area was carried out by 

Heimenz
16

 who studied the steady boundary layer 

flow in the region of a stagnation point on an infinite 

wall. The extension to the axisymmetric case was 

presented by Homann
17

. Later, a large number of 

analytical and numerical studies explaining various 

physical situations of the boundary layer stagnation 

point flow are presented by Sparrow et al.
18

, Chiam
19

, 

Amin and Riley
20

, Mahapatra and Gupta
21

 and 

Wang
22

. Most recently, Rosali et al.
23

, Mahapatra and 

Nandy
24

 and Lok and Pop
25

 considered the problem of 

stagnation point flow in various situations. 

Flow through porous media has attracted a lot of 

attention because these are quite prevalent in nature. 

Such type of flow finds its applications in a broad 

spectrum of disciplines including chemical engineering 

and geophysics. It is also important in many technological 

processes, geothermal energy usage and in astrophysical 

problems. Many other applications may also benefit 

from a better understanding of fundamentals of mass, 

momentum, and energy transport in porous media, 

namely, petroleum reservoir operations, food processing, 

cooling of nuclear reactors, building insulation, 

underground disposal of nuclear waste, and casting 

and welding in manufacturing processes. Enhancement 

of forced convection by the use of a porous substrate 

has been the subject of several investigations. 

Comprehensive references on flow in porous media 

can be found in books by Ingham and Pop
26

, 

Schlichting and Gersten
27

, Vafai
28

 and Nield and 

Bejan
29

. Moreover, Vafai and Kim
30

 reported a 

composite system problem involving a relatively  

thin porous substrate attached to the surface of a flat 

plate. Thereafter, representative studies dealing with 

these effects have been studied by researchers such  

as Huang and Vafai
31

, Yih
32

, Jat and Chaudhary
33

, 

Chaudhary and Kumar
34

 and Khader
35

. 
In recent years, a number of simple fluid flow 

problems of viscous incompressible fluid have 

attained new attention in the more general context of 

magnetohydrodynamics. The desired properties of the 

end product and the rate of cooling can be controlled 

by the use of electrically conducting fluid and 

applications of magnetic field. The study of 

magnetohydrodynamic flow through a heated surface 

has important applications in many technological 

processes such as exotic lubricants and suspension 

solutions, magneto-hydrodynamic flight, foodstuff 

processing, MHD power generators, solidification  

of liquid crystals, the boundary layer control in 

aerodynamics, and in the field of planetary 

magnetosphere. Hydromagnetic boundary layer flow 

over a stretching surface has attracted attention of 

many researchers in recent time due to its important 

applications in metal-working processes and modern 

metallurgy. It seems that the magnetohydrodynamic 

flow over a stretching surface was first investigated 

by Andersson
36

. On the other hand, the problem of 

MHD stagnation point flow past a stretching sheet 

was presented by Mahapatra and Gupta
37

. Later, Abel 

and Mahesha
38

, Ramesh et al.
39

, Singh and Singh
40

, 

Makinde et al.
41

, Olajuwon and Oahimire
42

, and 

Chaudhary and Kumar
43

 analyzed and presented 

MHD flow problems considering various aspects of 

the problems.  

Inspired by Rosali et al.
23

, the objective of this 

present study is to investigate the effects of the 

magnetic parameter and the Eckert number on the 

boundary layer magnetohydrodynamic stagnation 

point flow over a stretching or shrinking surface 

immersed in a porous medium. It is expected that the 

obtained results can be served as a complement to 

previous studies providing useful information for 

applications. 

 

2 Description of the Problem 

Consider a steady, two-dimensional stagnation 

point flow of a viscous incompressible electrically 

conducting fluid impinging normally on a stretching 

or shrinking surface of constant temperature 
w

T  in a 

porous medium. The stretching or shrinking surface  

is placed along x-axis. The fluid is subjected to a 

uniform transverse magnetic field of strength 0B
 
in 

the direction of y-axis, as shown in Fig. 1. The 

induced magnetic field is assumed to be small 

compared to the applied magnetic field, so it is 

negligible. The external flow velocity varies linearly 

along x-axis, i.e., ( )eu x ax= , where 0a >  is the 

strength of the stagnation flow and x is the coordinate 

measured along the stretching or shrinking surface. 

The ambient fluid temperature T∞ is a constant. It is 

assumed that the velocity of the stretching or 

shrinking surface is ( )wu x bx= , where b is the 

stretching rate with 0b >  for stretching and 0b <  

for shrinking. Therefore, with these assumptions the 

governing boundary layer equations can be expressed as: 
 

0
u v

x y

∂ ∂
+ =

∂ ∂
 

… (1) 
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Fig. 1 – Physical model of the problem 

 

( ) ( )
22

0

2

1

e e
e e e

du Bu u u
u v u u u u u

x y dx y K

συ
υ

ρ

∂ ∂ ∂
+ = + + − + −

∂ ∂ ∂

  … (2) 
 

( )
2 22

20

2

e
e

p p

BT T T u
u v u u

x y y C y C

σµ
α

ρ ρ

 ∂ ∂ ∂ ∂
+ = + + − 

∂ ∂ ∂ ∂ 
 … (3)  
with the appropriate boundary conditions:  
 

( )

( )

0   :       ,    

 :       ,    

w w

e

y u u x bx T T

y u u x ax T T∞

= = = =

→ ∞ = = =
  … (4) 

where u  and v  are the velocity components in the 

x  and y  directions, respectively, y is the coordinate 

measured along normal to the stretching or shrinking 

surface, υ  is kinematic viscosity, 1
K  is the 

permeability of the porous medium, 
e

σ is the 

electrical conductivity, ρ  is the fluid density, T  is 

the temperature of the fluid, α is the thermal 

diffusivity, µ is the coefficient of viscosity and 

p
C is the specific heat at constant pressure.  
 

3 Similarity Solution 
To obtain the similarity solution of the Eqs (1)-(3), 

with the boundary conditions Eq. (4), the stream 

function and the dimensionless variables can be 

defined as follows [Rosali et al.
23

]: 
 

( )( , ) ex y xu fψ α η=  … (5) 
 

eu
y

x
η

α
=   … (6)  

 

( ) ( )wT T T T θ η∞ ∞= + −  … (7)  

 

where ( ),x yψ is the stream function defined as  

u = ∂ψ/∂y and v = − ∂ψ/∂x which automatically  

satisfy the continuity equation (1), ( )f η  is the 

dimensionless stream function, η  
is the similarity 

variable and ( )θ η  is the dimensionless temperature.  

Substituting Eqs (5)-(7) into the momentum and 

the energy equations (2) and (3), we obtain the 

following nonlinear ordinary differential equations:  
 

( ) ( )2Pr 1 1 1 0f ff f K f M f′′′ ′′ ′ ′ ′+ − + − + − + =
  
… (8)  

( ){ }22
Pr 1 0f Ec f M fθ θ′′ ′ ′′ ′+ + + − =   

 … (9)
 

 

with the transformed boundary conditions: 
 

0  :      0,     ,    1

:     1,   0

f f c

f

η θ

η θ

′= = = =

′→ ∞ → →
 … (10) 

 

where primes denote differentiation with respect to η , 

Pr
υ

α
=  is the Prandtl number, 

1

K
aK

υ
=  is the 

permeability parameter, 

2

2

Ree o x

e

B
M

u

σ υ

ρ
=  is the 

magnetic parameter, Re e
x

u x

υ
=  is the local Reynolds 

number, 
( )

2

e

p w

u
Ec

C T T∞

=
−

 is the Eckert number 
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and 
b

c
a

= is the stretching or shrinking parameter 

with 0c > for stretching and 0c <  for shrinking. 
 

4 Numerical Procedure 
Equations (8) and (9) with the boundary 

conditions (10), are solved numerically using  

Runge-Kutta fourth order method along with 

shooting technique. By converting them into the 

following simultaneous linear differential equations 

of first order: 
 

1 2p p′ =  
… (11) 

 

2 3p p′ =
  … (12) 

 

( ) ( )2

3 1 3 2 2 2

1
1 1 1

Pr
p p p p K p M p′  = − − + − + − + 

 … (13) 
And 
 

1 2q q′ =
 … (14) 

 

( ){ }2 1 2

22

3 2
Pr 1q p Ecq p M p′ = − + + −

   … (15) 

with the converted boundary conditions: 
 

1 2 1

2 1

0 : 0,   ,  1

: 1, 0

p p c q

p q

η

η

= = = =

→ ∞ → →  … (16)
 

 

where 
1 2 3 1,    ,    ,    p f p f p f q θ′ ′′= = = =  and 

2 q θ ′= . 

To solve Eqs (13) and (15) as an initial value 

problem, the values of ( )3 0p
 

and ( )2 0q
 

are 

required. But no such values are given at the 

boundary. So the suitable guess values for ( )3 0p and 

( )2 0q  are chosen and the fourth order Runge-Kutta 

method with step size 0.001 is applied to obtain the 

solution. The computations have been carried out for 

various values of the stretching or shrinking 

parameter c , the Prandtl number Pr , the permeability 

parameter K , the magnetic parameter M and the 

Eckert number Ec . A sixth decimal place accuracy is 

restricted for the sake of convergence. 

 

5 Local Skin Friction and Surface Heat Transfer 

The physical quantities of interest are the local skin 

friction coefficient 
f

C  and the surface heat transfer, 

i.e., local Nusselt number x
Nu , which are defined as: 

0

2

2

y

f

e

u

y
C

u

µ

ρ
=

 ∂
 ∂ 

=  
 … (17) 

 

0y

x

w

T
x

y
Nu

T T

=

∞

 ∂
−  

∂ 
=

−
  

 … (18) 

 

Using the similarity variables (5) - (7), we obtain 
 

( )
1

Re 0
2

f xC f ′′=  
 … (19)

 

 

( )0
Re

x

x

Nu
θ ′= −   … (20) 

 

where the function (0)f ′′ and (0)θ ′  present the wall 

shear stress and the heat transfer rate at the surface 

respectively. 

 

6 Results and Discussion 

The computational results are demonstrated in 

graphical and tabular form. In order to develop a 

better understanding of the physical problem, as 

display the influences of various parameters such as 

the stretching or shrinking parameter c , the Prandtl 

number Pr , the permeability parameter K , the 

magnetic parameter M  and the Eckert number Ec  

on the velocity ( )f η′ , the temperature ( )θ η , the 

shear stress ( )0f ′′  and the heat transfer rate ( )0θ ′ . 

Figures 2 and 3, display the effects of the stretching 

or shrinking parameter c  on the velocity ( )f η′  and 

the temperature ( )θ η  profiles respectively, while the 

other parameters are constant. These figures show that 

the velocity increases with the increasing values of 

the stretching or shrinking parameter c  while the 

temperature decreases for an increment in the 

stretching or shrinking parameter c . Thus the actual 

effect of the stretching or shrinking parameter is to 

make the temperature distribution more uniform 

within the boundary layer. So, it can be effectively 

used for the fast cooling of the sheet. 

The velocity ( )f η′  and temperature ( )θ η  

distribution for various values of the Prandtl number 

Pr  are shown in Figs 4 and 5 respectively, keeping 

other parameters constant. From these figures it is 

evident that the velocity decreases with the increasing 

values  of  the  Prandtl  number Pr  while in the  same  
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Fig. 2 – Effects of c  on the velocity distribution for 

Pr 1.0, 0.1K= = and M = 0.1 

 

 
 

Fig. 3 – Effects of c  on the temperature distribution for 

Pr 1.0, 0.1K= = , 0.1M =  and Ec = 0.1 

 
 

Fig. 4 – Effects of Pr  on the velocity distribution for 

0.1, 0.1c K= − = and M = 0.1 

 

 
 

Fig. 5 – Effects of Pr  on the temperature distribution for 

0.1, 0.1, 0.1c K M= − = =  and Ec = 0.1 
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case the temperature increases accordingly. This is 

due to the fact that the increasing values of the Prandtl 

number reduce the thermal boundary layer thickness. 

It can be noticed that the temperature distribution 

asymptotically approaches to zero in the free stream 

region. So, in heat transfer problems the Prandtl 

number controls the relative thickness of flow and 

thermal boundary layers, and can be used to increase 

the cooling rate. 

Figures 6 and 7 plotted the influences of the 

permeability parameter K  on the velocity ( )f η′  

and the temperature ( )θ η  profiles respectively, 

taking other parameters constant. From these figures 

it can be seen that the velocity increases with the 

increasing values of the permeability parameter K  

but the reverse is true for the temperature distribution. 

For higher values of the permeability parameter the 

velocity profile is nearly uniform in which the 

velocity boundary layer is confined within a very thin 

region. This phenomenon occurs for the assumption 

of pure Darcy flow. It is also clear that the velocity is 

more sensitive to the permeability parameter than the 

temperature profiles, as compared in these figures. 

The influence of different values of the magnetic 

parameter M  on the velocity ( )f η′  and the 

temperature ( )θ η
 
distribution are presented in Figs 8 

and 9 respectively, where the other parameters are 

kept constant. These figures indicate that the velocity 

increases with the increasing values of the magnetic 

parameter M  but the opposite behavior is true for the 

temperature distribution. From a physical point of 

view, this can be explained by the fact that the 

application of a uniform magnetic field normal to the 

flow direction gives rise to a force which is known as 

Lorentz force. This force is positive and consequently 

as the magnetic parameter M  increases, the force 

also increases and hence accelerates the flow and 

decelerates its temperature. 

Figure 10 exhibits the temperature ( )θ η  profiles 

for the variation in the Eckert number Ec  keeping 

other parameters constant. In this case, it is 

noteworthy that the Eckert number Ec  has an 

increasing effect on the temperature profiles. This is a 

consequence of the fact that for higher values of the 

Eckert number, there is significant generation of heat 

due to viscous dissipation near the sheet. Therefore, 

viscous dissipation in a flow through porous surface is 

beneficial for gaining the temperature. 

Table 1 shows the effects of the stretching or 

shrinking  parameter  c ,  the Prandtl  number Pr ,  the  

 
 

Fig. 6 – Effects of K  on the velocity distribution for 

0.1,Pr 1.0c = − =
 
and M = 0.1 

 
 

Fig. 7 – Effects of K  on the temperature distribution for
 

0.1,Pr 1.0, 0.1c M= − = =  and Ec = 0.1  



CHAUDHARY & CHOUDHARY: MHD FLOW NEAR STAGNATION POINT 

 

 

215 

 
 

Fig. 8 – Effects of M  on the velocity distribution for 

0.1,Pr 1.0c = − =
 
and K = 0.1 

 

 
 

Fig. 9 – Effects of M  on the temperature distribution for 

0.1,Pr 1.0, 0.1c K= − = =  and Ec = 0.1 

 

 

Fig. 10 – Effects of Ec  on the temperature distribution for 

0.1,Pr 1.0, 0.1c K= − = =  and M = 0.1 

 

Table 1 – Numerical values of ( )0f ′′  for different  

values of , Pr,c K and M 

c  Pr  K  M  ( )0f ′′  

- 0.5 1.640077 

- 0.2 1.474584 

 0.2 1.109737 

 0.5 

1.0 0.1 0.1 

0.747083 

0.7 1.670304 

1.0 1.397476 

2.0 0.988166 

- 0.1 

5.0 

0.1 0.1 

0.625275 

1.0 1.742807 

2.0 2.060220 

- 0.1 1.0 

3.0 

0.1 

2.335104 

1.0 1.742807 

3.0 2.335104 

- 0.1 1.0 0.1 

5.0 2.805457 
 

permeability parameter K  and the magnetic 

parameter M  on the wall shear stress ( )0f ′′ . It is 

seen that the wall shear stress ( )0f ′′ decreases with 

the increasing values of the stretching or shrinking 

parameter c and the Prandtl number Pr  when other 

parameters are constant while a reverse phenomenon 
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occurs for the permeability parameter K  and the 

magnetic parameter M . From physical point of view, 

positive sign of skin friction coefficient means the 

fluid exerts a drag force on the surface while the 

negative sign means the opposite. 

The variation of the reduced Nusselt number 

( )0θ ′  for several values of the stretching or 

shrinking parameter c , Prandtl number Pr , the 

permeability parameter K , the magnetic parameter 

M  and the Eckert number Ec  are presented in  

Table 2. It is numerically seen that the heat transfer 

rate ( )0θ ′ decreases with the increasing values of the 

stretching or shrinking parameter c  and the 

permeability parameter K  but an opposite behavior  

is noted in the case of the Prandtl number Pr ,  

the magnetic parameter M and the Eckert number Ec , 

taking other parameters constant. Moreover it is quite 

evident that the values of the heat transfer rate ( )0θ ′
 

are always negative for all the values of physical 

parameters considered. Practically, negative sign of 

Nusselt number means that there is a heat flow from 

the surface. 
In order to validate the accuracy of computational 

results obtained in present study, the values of the 

wall shear stress and the heat transfer rate  

are compared with the previous results of Sparrow  

et al.
18

, Yih
32

 and Lok and Pop
25

 in Table 3. From  

the table it can be seen that the results are in an 

excellent agreement. 
 

7 Conclusions 
The combined effects of the stretching or shrinking 

parameter, the Prandtl number, the permeability 

parameter, the magnetic parameter and the Eckert 

number on two-dimensional boundary layer 

magnetohydrodynamic stagnation point flow were 

studied numerically. The governing equations were 

transferred to a set of ordinary differential equations 

by using similarity variables and computational 

results for the velocity, the temperature, the wall shear 

stress and the heat transfer rate at the surface are 

made by Runge-Kutta fourth order method in the 

association with shooting technique. From the results 

of the problem, it can be concluded that the velocity 

profile is changing due to the stretching or shrinking 

parameter, the permeability parameter, the magnetic 

parameter and the Prandtl number. These changes are 

revealed by the velocity increases with the increasing 

values of the stretching or shrinking parameter, the 

permeability parameter and the magnetic parameter 

while it decreases with the increase in the Prandtl 

number. On the other hand, the thermal boundary 

layer thickness decreases for the increasing values of 

the stretching or shrinking parameter, the permeability 

parameter and the magnetic parameter but an opposite 

behavior occurs for the Prandtl number and the Eckert 

number. Moreover the local skin friction coefficient 

decreases with the stretching or shrinking parameter 

Table 2 – Numerical values of ( )0θ ′  for different values  

of , Pr, ,c K M and Ec 

c  Pr  K  M  Ec
 

( )0θ ′−  

- 0.5 0.314390 

- 0.2 0.437600 

0.2 0.583240 

0.5 

1.0 0.1 0.1 0.1 

0.676620 

0.7 0.511050 

1.0 0.476115 

2.0 0.401936 

- 0.1 

 

5.0 

0.1 0.1 0.1 

0.291996 

1.0 0.484310 

2.0 0.487360 

- 0.1 1.0 

3.0 

0.1 0.1 

0.487370 

1.0 0.457348 

3.0 0.418457 

- 0.1 1.0 0.1 

5.0 

0.1 

0.383180 

0.3 0.326960 

0.5 0.177807 

- 0.1 1.0 0.1 0.1 

0.7 0.028650 

Table 3 – Comparison of the values of ( )0f ′′ and ( )0θ ′− with the previous literature results  for Pr 1.0= , 0.0K =  and 0.0Ec =  

( )0f ′′  ( )0θ ′−  
c  M  

Sparrow18 Yih32 Lok and Pop25  Present Study Sparrow18 Yih32 Present Study 

-0.5 - - 1.49567 1.49567000 - - - 

-0.2 - - 1.05113 1.05113000 - - - 

 0.5 

0.0 

- - 0.71329 0.71329500 - - - 

0.0 1.231 1.232588 1.23259 1.23258800 0.5705 0.570465 0.5704650 

1.0 1.584 1.585331 - 1.58533100 0.5953 0.595346 0.5953460 

0.0 

4.0 2.345 2.346663 - 2.34666262 0.6341 0.634132 0.6341319 
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and the Prandtl number while the reverse phenomenon 

occurs for the permeability parameter and the 

magnetic parameter. Finally, the surface heat transfer 

rate decreases with the stretching or shrinking 

parameter and the permeability parameter but the 

reverse behavior is noted for the Prandtl number, the 

magnetic parameter and the Eckert number.  
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