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The study presents a simultaneous variation of equatorial electrojet (EEJ) current and the ionospheric F2-layer maximum 
electron density (NmF2) during geomagnetic quiet days and moderate solar conditions (solar radio flux, 𝐹10.7  120 sfu). 
The geomagnetic measurements at Kotatobang (KTB) and Langkawi (LKW) stations have been used to estimate the 
magnetic daily variation in H-component and in deriving EEJ. The NmF2 data set is from Frequency Modulation 
Continuous Wave (FM-CW), an analogue ionosonde located at the KTB station. The study examines both the diurnal and 
seasonal variation in EEJ and the corresponding effect on the measured NmF2. The results obtained show that the derived 
EEJ at LKW shows a daytime peak which coincides with the period NmF2 measurement at KTB station depleted to a 
daytime low value. The role of EEJ at the LKW station correlates poorly with the NmF2 at KTB in which their correlation 
coefficient (r) is in the range of 0.02 to 0.04 for equinox, summer and winter, respectively. However, an r-value of 0.33 was 
observed when the whole data set for the year 2012 was considered. The poor correlation coefficient between derived EEJ 
and NmF2 measured at KTB during the moderate solar condition suggest that EEJ has little or no influence on the prevailing 
ionospheric condition at a low latitude station located outside the EEJ strip. 
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1 Introduction 
The variations of ionospheric electron density 

around the geomagnetic dip equator are mostly  
related to the equatorial electrojet (EEJ) current 
system. The EEJ is a daytime enhanced ribbon of 
current flowing eastward in the dynamo E-region 
height (100 to 120 km) and confined between ±3° 
latitude of the dip equator1. In the build-up of the EEJ 
after sunrise, the E-region dynamo is driven by the 
worldwide solar wind across the magnetic field which 
creates east-west electric field (E)that is transported to 
the ionospheric F-region height along with the 
conducting geomagnetic field lines2. Subsequently, 
the E field over the geomagnetic equator is 
perpendicular to the geomagnetic field (B) resulting to 

an upward E × B plasma drift that is responsible for 
the occurrences of the equatorial ionospheric anomaly 
(EIA). The uplifted plasma (also known as the 
fountain process) at the F-region altitude near the dip 
equator then diffuses along with the B field. The 
direction of the plasma diffusion is downward and 
moves towards the higher altitude under the influence 
of gravity, pressure gradient and the decreasing ion-
neutral drag force3. This fountain process causes the 
observed depletion (trough) of electron density 
around the magnetic dip equator and thus producing 
two peaks (crest) on both sides of the geomagnetic 
equator (± 15 to 20°). 

Over the dip equator, the fountain process is driven 
by the E × B plasma drift being controlled by EEJ4. 
Thus, the study of EEJ and EIA phenomena is 
important in examining the electron redistribution 
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over the ionospheric equatorial and low latitude 
region. The plausible role of EEJ modulating the 
daytime vertical drift has been observed to have 
strong correlation coefficient2,5,6,7, thus, justifying 
related primary causes of EIA and EEJ phenomena. 
Previous, studies have reported a significant 
relationship between the strength of EIA and 
integrated EEJ (IEEJ) at the Indian and Brazilian 
sectors4. Likewise, the influence of EEJ on the 
observed maximum electron density, NmF2 measured 
at Ilorin station (Geographic coordinates: 8.50°N, 
4.68°E) shows some lag in-between the peak of EEJ 
and the daytime trough in NmF28.The observed lag is 
related to the time of maximization of the EIA that is 
a function of the maximum electric field. 

The present study aims to examine the contribution 
of EEJ to the diurnal variation of NmF2 observed at a 
station within the EIA zone but off the EEJ strip. This 
study uses the simultaneous measurement of 
geomagnetic H-component data and ionosonde 
measurement during geomagnetic quiet and moderate 
solar conditions.  
 
2 Materials and Methods 

We have used ionospheric data from an analogue 
ionosonde of the type FM-CW located at Kotatobang 
(KTB) in Indonesia (Geographic coordinates: 0.20°S, 
100.32°E). The KTB station is among the ionosonde 
stationsin the South-East Asia Low-latitude 
Ionospheric Network (SEALION). The FM-CW 
ionosonde has been well described in the study of 
Nozaki9. The ionospheric NmF2 values are calculated 
using the relationship with the critical frequency of 
ionospheric F-layer (foF2). 

𝑁𝑚𝐹2 1.24  𝑓𝑜𝐹2  10  ... (1) 

where, NmF2 is in 𝑚  and foF2 is in MHz. The 
FM-CW ionosonde works by transmitting high 
frequency (HF) radio signal within 1 to 30 MHz. The 
time delay of the reflected radio signals trace was 
recorded in what is known as an ionogram. The foF2 
parameter was manually scaled from the ionogram 
data set and NmF2 was then calculated using the 
formula given in Eq. (1).The extraction of the foF2 
values on the ionogram data set was done using  
the SEAIONO software developed by the Space 
Science Center (ANGKASA), Universiti Kebangsaan 
Malaysia10. 

Furthermore, the geomagnetic H-component data 
used in calculating the equatorial electrojet (EEJ) 
current was obtained from a ground magnetometer 

installed at Kotatobang (KTB) and Langkawi (LKW) 
stations. The H-component measurement from these 
stations (KTB and LKW) are magnetic records from 
the Magnetic Data Acquisition System (MAGDAS)11. 
The LKW (Geographic coordinates: 6.30°N, 99.78°E) 
station is found around the dip equator and 
accordingly is within the EEJ strip. However, the 
KTB station was off the magnetic dip equator and is 
not located in the EEJ zone. The locations of these 
stations in that way satisfy the pair-station method of 
estimating EEJ current12. In the two-station method, 
EEJ can be calculated by subtracting the quite daily 
(Sq) variation of H-component, Sq(H) measured close 
to the dip equator and that off the dip equator. 

The Sq (H) was calculated by deducting the  
daily baseline value from the hourly values of the 
measured H-component. The daily baseline value  
was defined as the average of the night time adjoining 
hours of the geomagnetic H-component about the 
local time 0000h, 0100h, 2200h and 2300h 
respectively13. The subtraction of the baseline values 
from the H-component records was necessary  
because of the ionospheric conductivity at dynamo  
E-region altitudes diminishes during the nighttime14. 
Thus, the expression for calculating the quiet daily 
variation of geomagnetic H-component Sq(H) is 
given as: 

∆H H  BV  ... (2) 

where, ∆H represents Sq(H), HLT indicates the 
hourly values of the geomagnetic H-component and 
the BV stands for baseline values.  

At a location closer to the magnetic dip equator, the 
calculated ΔH includes both components of EEJ 
current and the planetary Sq current effects. One way 
of isolating the EEJ current from the total Sq current 
is by adopting a pair-station method5,7,15,16. The 
method entails considering a pair of the station, with 
one located close to the dip equator and the other 
outside the equator. For this study, the calculated ∆H 
at KTB station (∆HKTB) is subtracted from ∆H at 
LKW station (∆HLKW) to give the overhead EEJ at the 
LKW station (EEJLKW). 

EEJ ∆H  ∆H   ... (3) 

Figure 1 for example shows the quiet day ΔH 
values at both the LKW and KTB stations. The EEJ 
causes an increment in the magnitude of the observed 
geomagnetic H-component measured within the ±3ºof 
the dip equator7. This enhancement is manifested in the 
magnitude of ∆HLKW which is seen to be higher than 
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