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Scheduling scientific workflow in a distributed computing resource is a challenging job. It involves heterogeneous 

resource allocation to concurrent tasks in order to achieve the desired scheduling goal. In this paper, we are presenting a 

multi-workflow Earliest Cycle Time algorithm, mECT. The objective of the algorithm is to reduce schedule length while 

ensuring no deadlock situation occurs due to dependency violation. The algorithm is suitable for multi workflow 

applications that deal with large data sets and run in a cyclic order. We have carried out extensive simulations to compare 

the proposed algorithm with well known existing algorithms. We have also tested our algorithm for a low resolution (N48) 

weather Unified Model (UM-10.2) in a simulated environment developed by the Met Office, United Kingdom. Results show 

that mECT performs better in terms of shorter makespan and lesser deadlocks. 
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Introduction 

Execution of any scientific workflow in a cluster of 

computers involves mapping of tasks in a distributed 

heterogeneous computing environment. Scheduling is 

required in order to optimise some of the performance 

criteria, such as system utilisation, throughput, 

efficiency, and reliability. Multiple task assignment in 

a distributed computing system is an NP-complete 

problem, Kumar et al.
1
, Shahul et al.

2
 Hence, a single 

scheduling solution is not possible. Concurrent 

scheduling of multiple applications is a well-

researched topic, and the references
3–9 

present several 

heuristics. However, scientific applications may be 

data-intensive or computation-intensive. Some 

applications need to optimise throughput, whereas 

another application may require fast response time. 

As a result, different algorithms are required to 

schedule tasks in a distributed system.  

Weather forecasting models are multi-workflow 

applications that deal with large data sets and need 

extensive computation time. Forecast models 

typically depend on their own most recent previous 

forecast. Thus, some models are dependent on 

external data like real-time observational data or 

output data from another model. One or more models 

need to wait for these data before proceeding to 

further downstream tasks. One way to represent 

Numerical Weather Prediction (NWP) is to group 

dependent tasks and introduce a common cycle  

point based on start time. A forecast cycle point 

spawns its successor when external driving data is 

available. A real-time operation consists of a series of 

forecast cycle points.  

The present work involved scheduling weather 

forecasting workflows in a distributed heterogeneous 

computing platform. The workflow involves different 

Weather Models (WM) that share data between them. 

WMs process input and output temporal files 

sequentially. During execution, some of these files are 

accessed several times and shared between different 

tasks. Oliver et al.
10

 reported that a batch of 

workflows could be merged into a meta-scheduler. 

The authors have developed 'cylc' - a workflow 

engine for running suites of inter-dependent jobs. In 

weather forecasting, multiple weather models run 

concurrently. Hence we need to modify scheduling 

solutions for concurrent execution of multiple 

workflows in a cyclic order. Some references are 

available on concurrent workflow scheduling 

methods. Hwang et al.
11 

proposed grouping of 

individual applications into an application pool and 

apply list scheduling heuristics. Different resource 

allocation policies for high throughput computing are 
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presented by Arabnejad et al.
12

 In this paper, we have 

proposed a concurrent scheduling solution of WMs in 

a heterogeneous platform.  

 

Multi-workflow forecast cycles 

Weather forecasting has multiple iterative 

processes. The workflow engine needs to orchestrate 

distributed suits of interdependent tasks. The 

dependency relationship for a single forecast cycle 

point may be represented by a Directed Acyclic 

Graph, as shown in Fig. 1(a). Each node in the DAG 

represents a task. Within a single forecast cycle point, 

the dependency between tasks needs to be resolved. 

Nodes a, b, and c in the DAG represents three 

Weather Models (WMs). Nodes e and f represent two 

post-processing or model output tasks. WMs are 

dependent on their own most recent previous state, 

called warm cycling, and may have inter-cycle 

dependence between different tasks. In a weather 

forecast suite, WMs do observation processing and 

data-assimilation tasks for the next cycle point. In Fig. 

1(a), u represents external data. The scheduler must 

be able to branch model output data to multiple 

downstream tasks without dependency violation. 

We may consider a scenario 1, where, in real-time, 

forecast cycle points run consecutively in a serial 

manner. In Fig. 1(b) two such cycles having a time 

gap between them is shown. Task a needs to wait  

for external data, whereas task b and c need model 

output from a. Post-processing is possible only when 

WM b and c are completed. In this scenario, each task 

in a cycle is dependent on the cycle preceding it. As a 

result, a new cycle begins only after completion of the 

previous cycle.  

Scenario 1 is rather simplistic and will introduce 

cycle wait time. A new cycle will start only when the 

last task of the previous cycle is completed. If we 

assume that the external driving data are available in 

advance, we may consider scenario 2, where task a is 

started without waiting for the completion of the cycle 

preceding it. However, in that case, there is a 

possibility of a dependency violation. Scenario 2 with 

a dependency violation for task c is depicted in Fig. 

1(c). Task a is dependent on external driving data as 

well as its previous instance, task b and c are 

dependent on their previous instances. As shown in 

Fig.1(c), task c in cycle 2 started before completion of 

task c in the upstream cycle. Hence, it may be 

concluded that starting a whole new cycle without 

completion of the previous cycle is not possible 

unless inter-cycle dependencies are handled.  

Scenario 3, a possible multi-cycle workflow, where 

each task starts the moment its previous instance is 

completed is depicted in Fig. 1(d). Warm cycled tasks 

a, b, and c are dependent on their previous instances, 

whereas tasks d and e are the model outcome. In 

scenario 3, each task starts as soon as its previous 

instance is complete. However, in this scenario, it is 

assumed that there is no delay in the external data 

source. The scheduler, handling such workflow, must 

adapt dynamic external conditions like delay in 

receiving external data, else; dependency violation 

will bring the system down. 
 

Platform 

Our heterogeneous computing platform has clusters 

of compute nodes connected by the high-speed 

backbone, InfiniBand, shown in Fig. 2. Processors and 

bandwidth of switches of different clusters may be 

different. However, within the same cluster, all 

processors are identical, i.e., we have C =  𝑐𝑖
𝑁
𝑖=1  

clusters. For each ci, we have Pj { j=1 …m}, identical 

processors. Processors execute tasks in a sequential 

 
 

Fig. 1 — Job scheduling of consecutive forecast cycles 

 
 

Fig. 2 — Heterogeneous clusters connected by InfiniBand 
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manner as it is done in a space sharing framework. 

Processors in each cluster are connected to the 

backbone by a switch. Sheikh et al.
13 

presented a 

computational model to measure communication 

overhead for such a cluster. 

For a cluster having Pj processors, parallel 

execution time Tp of a task ti can be calculated using 

Amdahl’s law: 

Tp(ti, Pj) = ( α + 
1−α  

𝑃𝑗
 ). Tp ( ti, 1 ), where Tp ( ti, 1 ) is 

the execution time of ti in single processor and, α is 

the fraction of ti that cannot be parallelised. We 

assume that parallel tasks can be deployed in any 

number of clusters without increasing communication 

overhead. 

Topcuoglu et al.
14

 proposed Heterogeneous Earliest 

Finish Time (HEFT) algorithm for a fixed number of 

heterogeneous processors. The HEFT algorithm 

selects a task based on the highest rank, and insertion 

based assignment is done for processor selection that 

ensures the earliest finish time. A multi-workflow 

application for heterogeneous distributed platform is 

presented by Acevedo et al.
15

 

 

Problem formulation  

Formally, in a multiple workflow (MF) situation, 

each workflow in a set of MFset is represented as a 

graph MFi = (Vi, Ei), i = 1, 2, …. Nw, where Nw, is the 

number of workflows in MFset. Vi={1,2,…,Ni} is a set 

of vertices or nodes representing Ni tasks in the i-th 

workflow. and Ei = { ei,j | ( i, j) ϵ {1, . . . , V }×{1, . . . 

, V }} represents is a set of weighted edges between 

vertices. Each directed edge ei,j represents 

communication between task vi to task vj, whereas the 

weight of each edge represents the volume of data 

transmitted. A different number of processors may 

execute tasks vi and vj. We have assumed all tasks are 

non-preemptive. 

A heterogeneous cluster has N resources having  

Nt types. Each resource can have any one of the  

types, ranging from 1 to Nt. Here resource signifies 

single cluster of multi-core processors. We have 

assumed zero communication costs between 

processors in a cluster. 

For any application model represented by DAG, 

Let cik is computation cost of i
th
 task in k

th
 processor, 

eij is communication cost between i
th
 task to j

th
 task, dij 

is data transfer between i
th
 to j

th
 task. σ is a vector of 

size n that maps tasks to processor. Φ is a set of all the 

mappings. Then the objective function of a task 

scheduling problem is expressed as: 

σ =   𝑒𝑖,𝑗
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 (𝑑𝜎 𝑖 𝜎[𝑗 ]) +  𝑐𝑖𝜎 [𝑖]

𝑛
𝑖=1  ∀σ ∈ Φ 

where   𝑒𝑖,𝑗
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 (𝑑𝜎 𝑖 𝜎[𝑗 ]) is the 

communication cost between interacting tasks and 

 𝑐𝑖𝜎 [𝑖]
𝑛
𝑖=1  is the computation cost for all mappings 

between tasks to processors. Task scheduling 

algorithms try to minimize the objective function. 

We are proposing a multi-workflow scheduling 

algorithm mECT. The objective of the algorithm is to 

reduce makespan by ensuring no dependency 

violation between inter-cycle tasks. The algorithm has 

to ensure the concurrent processing of multiple tasks 

from different workflows. All the workflows run 

concurrently and in a cyclic manner, i.e., after 

completion of the first cycle of the i
th
 workflow, MFi, 

the second cycle of MFi starts, and the process 

continues. In order to accommodate continuous 

cycles, we have introduced Cycle Time Tc in the list 

scheduling algorithm. For each workflow, Completion 

Time (CT) has to be lesser than Tc .  

For a given MFi, i = 1 ... Nw we need to maximise 

{Tci –  𝐶𝑇𝑗
𝑛
𝑗=1  }, where Tci is the cycle time of i

th 

workflow and  𝐶𝑇𝑗
𝑛
𝑗=1  is the completion time of all 

the n tasks. 

 

Multi-workflow Earliest Cycle Time Algorithm 

HEFT is one of the preferred algorithms to improve 

schedule length in any workflow. However, HEFT is 

applies to a single workflow. Our problem is to 

schedule all the workflows in a cyclic order. Hence 

we are extending the scope of HEFT to schedule 

multiple workflows having inter-cycle dependencies. 

Similar to HEFT, mECT also prioritise tasks and 

builds a queue of tasks. As mentioned in the previous 

section, we have introduced a Cycle Time Tc in the 

scheduling solution. The introduction of Tc will create 

a priority list of tasks as well as estimated execution 

time for a particular workflow. 

The algorithm has two phases. Phase one computes 

Cycle Time (Tc ) of each workflow; phase two is the 

mapping phase, where a priority queue based on 

precedence constraints and Cycle Time is created. 

Tasks from the queue are assigned to processors that 

provide earliest finish time.  

procedure mECT 

{σ0 = initialization  

while(1)  

1. Compute Cycle Time Tc 

2. Task setup 

  Compute communication and computation cost  
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  σ = candidate solution  

3. Priority queue and mapping } 

In phase 1, Tc is computed from the task graph 

based on maximum parallel execution time. 

Pseudocode to calculate cycle time is given below:  

1.  While(1) 

2.  For all i=1 to N 

3.   For all j = 1 to mT( leveli ) 

4.   For all k = 1 to Nt  

5.   Tc  Tc + max(cjk ) 

6. End while 

N is the total number of tasks in a DAG, mT( leveli) 

is the number of tasks in level i, Nt is the number of 

resource type, max(cjk ) is the maximum computation 

cost of j
th
 task in k

th
 resource.  

Two workflows, each having four tasks is shown in 

Fig. 3. There are three resource; one is of resource 

type 1, R1, and two are of resource type 2, R2. For 

each task, the execution time for both types of 

resources is given. For both workflow1 and workflow 

2, N = 4, Nt = 2. Tc for workflow 1 is 4 + 6 + 8 = 18 

and for workflow 2, Tc is 5 + 9 + 10 = 24. 

Phase 2 of the algorithm is based on satisfiability 

checking from a candidate solution based on Tc. In 

each iteration, configuration checking is done for a 

better solution. A candidate solution is generated 

based computation cost, and processor availability 

(PA) and n tasks are assigned among p processors.  

Algorithm: mECT 

Input: priority(ni), Tci 

Output: n × p Look-up matrix with task assignment 

PA(ni,pj) 

1. Initialization of vector σ  

2. Initialize computation cost 𝑐𝑖𝜎 [𝑖], cycle time Tc 

3. Compute priority of tasks 

priority(ni) = average(ci) + 

 𝑚𝑎𝑥  [ 𝑑𝑖𝑗 +  𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑛𝑖−1)] 

4. Setup processor availability 

 PA(ni,pj) = MAX{ avail[j], CT(ni-1,pj)} 

5. While(1) 

i. Re-compute completion time of task ni-1 on 

processor pj : CT(ni-1,pj) 

ii. Check candidate solution σ ∈ Φ 

iii. If ( Tci –  𝐶𝑇𝑗
𝑛
𝑗 =1  ) ≥ 0 then 

iv. PA(ni,pj) = LPT{ EST[j], CT(ni-1,pj)} 

v. else 

vi. compute priority(ni) 

6. compute PA(ni,pj) 

7. return  

Step 3, average(ci) calculates the average 

computation cost of task ni in p processors and  𝑑𝑖𝑗  

is communication cost between task i and j. Priority 

assignment is done by traversing DAG upwards, 

starting from a leaf node. The start time of processor 

pj is calculated based on the completion time of pj of 

the last assigned task.  

Steo 4 determines processor availability based on 

the computational capacity that minimizes ready task 

ni. PA(ni,pj) is available time of processor pj for task 

ni; avail [j] the time when processor pj is available for 

execution of task ni. CT(ni-1,pj) is the Completion 

Time of task ni-1 on processor pj. . 

Step 5 (i to vi) schedules the ready tasks in 

decreasing order and assigns processors based on the 

lowest processing time LPT. At line 6, the processors 

are mapped to tasks. When the lowest processing 

times are calculated, tasks are placed in the priority 

queue in ascending order. Makespan should be less 

than the cycle time.  

In order to explain the introduction of cycle time to 

schedule multiple workflows, we consider two 

workflows given in Fig. 3. We try to schedule both 

the workflows. The computation cost of each task is 

set as the mean value. The rank of each task is then 

computed by traversing the graph upwards in a 

recursive way, starting from the exit task.  

The priority of each task is calculated as: 

priority(ni) = average(ci) + 𝑚𝑎𝑥  [ 𝑑𝑖𝑗 +

 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑛𝑖−1)] , where average(ci) is the mean 

computation cost of each task and 𝑚𝑎𝑥  [ 𝑑𝑖𝑗 +

 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑛𝑖−1)] is the recursive calculation of 

priority for each task while traversing towards the 

node starting from exit node. The path that gives 

 
 
Fig. 3 — Two workflows. Notation: a/b , a:computation cost in 

resource 1, b: computation cost in resource 2 
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maximum cost is considered. For example, to 

calculate the priority of task 1 in workflow 1 (Fig. 3), 

traversing starts from exit node 4 and continues until 

node 1. Before traversing, the mean computation costs 

of nodes are calculated. 𝑤𝑖  for node 4, 𝑤4 = 
8+7

2
 = 7.5. 

Similarly, the mean computation costs of other nodes 

of workflow 1 are calculated. Priority of task 1 is for 

the traversal 4  2  1 is 7.5 + 4 + 3.5 = 15, while 

for the traversal 4  3  1 is 7.5 + 5 + 3.5 = 16. 

Hence maximum, i.e. 16 will be the rank of task 1  

of workflow 1. Ranks of all the tasks are given in 

Table 1. 

Resource allocation is done based on priority value 

and precedence constraints. The task having the 

highest priority is scheduled first provided the earliest 

start time of the task ESTi is more than or equal to 

earliest finish time EFTj of the task preceding it. In 

the example shown in Fig. 3, task 5 is assigned to R2 

as it has the highest priority value (21.5), and 

processing cost in R2 is lesser compared to R1. The 

next priority value is for task 7 (rank 17); however, 

EST7 < EFT5. As the condition is not fulfilled, the 

next highest priority 16 (task 1) is selected and 

scheduled. Scheduling is shown in Fig. 4(a). 

Makespan is 17. Clearly, makespan for workflow1 is 

more than the cycle time. Hence the first candidate 

solution is modified based on the cycle time, and the 

final task queue is prepared, shown in Fig. 4(b). 

Makespan of both the workflow is less than the 

respective cycle times. For the given example (Fig. 3), 

mECT fulfills both the cycle time conditions.  

 

Experimental methodology 

The performance of the proposed scheduling 

algorithm mECT is evaluated using an extensive 

simulation setup. We have explored wide ranges of 

scenarios like the number of workflows, the number 

of tasks in each workflow, heterogeneity of resources. 

Statistically significant numbers of experiments were 

carried out in a repeatable manner. We have studied 

our algorithm on a Unified Model virtual machine 

(VM) developed by Met Office, United Kingdom. 

VM comes with access to the Met Office Science 

Repository Service (MOSRS) and provides a simple 

environment to test run scheduler. VM also has a 

built-in test suite called rose-stem. The capability of 

VM depends upon the allocated resources before 

launch. Although VM is not capable of running an 

HPC scale simulation, most modern laptops can run 

low-resolution weather forecasting global model.  

Through this simulation process, we wanted to 

compare different task scheduling algorithms under 

different numbers of workflows and resources. This 

approach helped us in understanding the performance 

of different algorithms under varied resources. For 

simulation, we have generated synthetic test data,  

like the number of workflows, the number of tasks  

per workflow, and DAG parameters. We have used 

the Pegasus workflow generator reported by Deelman 

et al.
16 

to generate workflows. Parameters used to 

define DAG are width, density, regularity, and jump. 

Width signifies the maximum number of tasks across 

all levels, i.e., the maximum number of tasks that can 

be processed concurrently. Density signifies the 

number of edges between two levels. Uniformity of a 

Table 1 — Task scheduling queue 

Work flow Task number Initial priority Modified priority 

1 1 16 17 

1 2 11.5 16 

1 3 12.5 15 

1 4 7.5 11 

2 5 21.5 21.5 

2 6 15 11 

2 7 17 16 

2 8 9 8 

 
 

Fig. 4 — a) Scheduling of workflow 1 and 2 with initial priority, 

This results in violation of cycle time of workflow 1, b) 

Scheduling with modified priority 
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DAG is measured with regularity value, a low value 

of regularity signifies a wide variation of tasks at 

different levels. Jump signifies jumping from level L 

to (L+ jump) level. Width, density, and regularity can 

have values between 0 – 1. Workflow and DAG 

parameters are listed in Table 2. 

We have considered resources having 1, 2, 4, or 8 

clusters; each cluster can have only one of the two 

types of resources (resources R1 and R2). The number 

of processors in each type of resources varies between 

16 and 128. Processors in a cluster are connected  

to switch by 10 Gigabit (bandwidth 10 GBPS, latency 

50 μsec) Ethernet. Switches are having the same 

bandwidth and latency characteristics as the network 

links. Backbone network connecting all the clusters is 

having bandwidth 100 GBPS and latency 50 μsec.  

In our experiments with a given set of clusters, we 

have kept network characteristics fixed and varied 

only workflow and DAG parameters. Heterogeneity 

factor (β) is the same as the number of clusters, and 

minimum processor speed is calculated as the speed 

of the processor multiplied by β.  
 

Results and Discussion 

For performance analysis of mECT, we have 

compared it with two algorithms, 1) Parallel 

Heterogeneous Earliest Finish Time (pHEFT), an 

implementation of HEFT for dynamic load 

conditions, proposed by Barbosa et al.
17

, and 2) 

Heterogeneous Critical Path and Area Based 

Scheduling (HCPA), an implementation of CPA in a 

heterogeneous cluster proposed by N’Takpe et al.
18

 

Each set of experiments was carried out with a 

different number of tasks (10 or 20), we use this value 

with the algorithm; for example, HCPA10, mECT20. 

pHEFT schedules multiple DAGs having different 

arrival times. It has a scheduling strategy to define 

scheduling instants based on new job arrival and 

change in hardware availability. HCPA uses a  

novel virtual cluster methodology in order to  

handle resource heterogeneity. It has different task 

placement steps such that heuristics designed for 

homogeneous resources can be adapted for a 

heterogeneous environment. 

The performance of the algorithm was evaluated 

based on makespan, machine idle time, system 

utilisation, and cycle time violation. The average 

values of test run parameters are listed in Table 3, and 

graphs are shown in Fig. 5. 
 

Makespan 

Makespan is considered as one of the significant 

comparison matrices for any task scheduling 

algorithm. It is also called schedule length, i.e., finish 

time of the last task in a DAG. One of the objectives 

of mECT algorithm is to minimise makespan. 

However, there are different numbers of tasks in 

different workflows. The makespan of a DAG having 

more number of tasks will always be larger than the 

one having a lesser number of tasks. Hence, we have 

evaluated the schedule length ratio (SLR) as proposed 

by Topcuoglu et al.
14

 It is defined as follows: 
 

Schedule length ratio (SLR) 

SLR is defined as the ratio of makespan to 

minimum serial computation cost, i.e. 

SLR =
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

 min  𝑐𝑖𝑗  𝑛∈𝑁
 , SLR ≤ 1  … (1) 

 min 𝑐𝑖𝑗  𝑛∈𝑁  represents the summation of 

minimum computation cost considering all the tasks 

in a DAG are computed in series. SLR is a more 

suitable comparison matrix for multiple workflows 

scheduling algorithms. 

For workflow 1 given in Fig. 3 and the schedule 

given in Fig. 4,  min 𝑐𝑖𝑗  𝑛∈𝑁  = 3 + 3 + 4 + 7 = 17 

and makespan = 21, therefore from Eq. (1), SLR = 
16

17
= 0.94. For a task scheduling algorithm, lower the 

SLR, better is the algorithm. The variation of SLR 

with the number of workflows is shown in Fig. 5(d). 

In terms of SLR, mECT performed better with 20 

tasks compared to 10 tasks, having SLR 0.6 and 0.7, 

Table 2 — Workflow and DAG parameters 

Number of workflows 2, 5, 8, 11, 15 

Cost of computation (GFLOP) 10000 - 50000 

Tasks per workflow 4, 10, 20 

DAG width 0.1, 0.2, 0.8 

DAG density 0.2, 0.4 

DAG regularity 0.2, 0.8 

DAG jump 1, 2, 4, 8 

Table 3 — Average values of test run parameters 

 mECT10 mECT20 pHEFT10 pHEFT20 HCPA10 HCPA20 

Avg. idle time fraction 0.20 0.24 0.20 0.27 0.24 0.29 

System utilisation 0.54 0.63 0.54 0.64 0.43 0.44 

Cycle time violation 2.42 4.35 3.50 5.07 4.28 5.92 

SLR 0.70 0.60 0.77 0.71 0.83 0.81 
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respectively. SLR of mECT is 10% and 18% lower 

compared to pHEFT and HCPA in 10 task category, 

whereas, in case of 20 task category, SLR 

improvement is 16% and 35%.  

To understand resource utilisation, apart from the 

comparison matrices based on makespan, we have 

studied behaviour of our algorithm in terms of average 

idle time fraction (δidle) and system utilisation (η).  
 

Average idle time fraction (δidle) 

For any workflow, total idle time is measured from 

the width of idle slots. For the example workflow 1 

given in Fig. 3, and schedule sequence given in Fig. 4, 

total idle time is calculated as 6. However, total idle 

time will keep increasing as the number of tasks or 

workflow increases. Hence total idle time cannot be 

considered to be a performance measurement 

criterion. Therefore we calculate average idle time 

fraction, which is defined as the ratio of total idle time 

to the width of busy interval.  

𝜹𝑖𝑑𝑙𝑒 =  
𝑖𝑑𝑙𝑒  𝑡𝑖𝑚𝑒 𝑖

𝑤𝑖𝑑𝑡 ℎ   𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  𝑏𝑢𝑠𝑦  
𝑁
𝑖=1  , 0 ≤ δidle <1  … (2) 

System utilisation (η) 

System utilisation is the ratio of busy time intervals 

to resource reserve time. Resource reserve time is 

different from the makespan. From Fig. 4, makespan 

for workflow 1 is 16; whereas, resource reserve  

time is 21. In the case of cyclic scheduling of  

multiple workflows, resource reserve time tends  

to be equal to makespan. Resource reserve time  

is equal to makespan when no cycle time violation 

takes place. 

η =  
𝑤𝑖𝑑𝑡 ℎ   𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  𝑏𝑢𝑠𝑦  

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒  𝑟𝑒𝑠𝑒𝑟𝑣𝑒  𝑡𝑖𝑚𝑒
𝑁
𝑖=1  , η ≤ 1  … (3) 

For the two workflows described in Fig. 3,  

we calculate δidle and η using mECT  

scheduling given in Fig 4(a).  𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒𝑖
2
𝑖=1  =  

7,  𝑤𝑖𝑑𝑡ℎ  𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑢𝑠𝑦 𝑖
2
𝑖=1  = 45, 

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑡𝑖𝑚𝑒 𝑖
2
𝑖=1  = 63. Therefore,  

δidle = 0.15, η = 0.71  

Now we calculate the same parameters from Fig. 4(b). 
 𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒𝑖

2
𝑖=1  = 6,  𝑤𝑖𝑑𝑡ℎ  𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑢𝑠𝑦 𝑖

2
𝑖=1  = 44, 

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑡𝑖𝑚𝑒 𝑖
2
𝑖=1  = 63. Therefore, from 

 
 

Fig. 5 — Performance evaluation (a) Average idle time fraction (b) Utilisation (c) Violated cycle time (d) SLR 
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Eq. (2) we get δidle = 0.13 and from Eq. (3) we get η = 

0.69. 

Cycle time Tc is one of the key criteria for 

scheduling multiple workflows that run concurrently 

and in a cyclic order. If the makespan of any 

workflow exceeds Tc, the next cycle of the same 

workflow will not be able to start, and resource 

utilisation will suffer in the long run. This was 

established during simulation with more number of 

workflows having a different number of tasks (10  

and 20). From the graph shown in Fig. 5(c), it is clear 

that mECT performed better in terms of system 

utilisation with more number of workflows. In both 

10-task and 20-task categories, mECT and pHEFT 

show almost similar system utilisation, both 

performed 20% better than HCPA.  

We have evaluated violated cycle time in each set 

of experiments with a different number of workflows. 

From Fig. 4(a), violated cycle time is 1 (workflow 1, 

cycle time 20, makespan 21), whereas, it is zero in the 

case of 4(b). However, the number of cycle time 

violation increases as the number of workflows is 

increased. The violated cycle time with the number of 

workflows is shown in Fig 5(b). Cycle time violation 

with mECT is 44% lesser compared to pHEFT and 

75% lesser compared to HCPA in 10 task category. 

For 20 task category, mECT performance is 31% and 

37% better compared to pHEFT and HCPA, 

respectively. 

For each set of experiments, the simulation was 

carried out twice. Before the first run, the estimation 

of the cycle time of each workflow is calculated  

based on parallel execution time in the slowest 

resource. For example, cycle time for workflow 1, 

given in Fig. 3 is calculated as 4 + 6 + 8 = 18, and for 

workflow2, cycle time is 24. Based on the results of 

the first run, as shown in Fig. 4(a), cycle time is 

modified to 16 and 21. 

 

Conclusions 

In this paper, we have presented the multi 

workflow Earliest Cycle Time (mECT) algorithm to 

schedule workflows concurrently in a heterogeneous 

computing cluster. The algorithm enables cyclic 

processing of multiple tasks without any deadlock. 

We have done extensive simulation to evaluate the 

performance of mECT and compared it with two 

other algorithms. We have tested the algorithm to run 

a low resolution (N48) Weather Model in a simulated 

environment, Met Office Virtual Machine Box, 

developed by the Met Office, United Kingdom. 

Results indicate that mECT performs better in most  

of the performance evaluation criteria, except 

resource utilisation. We want to extend our work to 

address QoS parameters like fair resource sharing and 

resource on-demand, without increasing time 

complexity. 
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