

Journal of Scientific & Industrial Research

Vol. 79, June 2020, pp. 517-525

Multi-Workflow Concurrent Scheduling in a Heterogeneous Computing Cluster

Rintu Nath
1
*, A Nagaraju

2
 and M N Raghavendra Sreevathsa

3

1Department of Computer Science and Engineering , Central University of Rajasthan, Kishan Garh, Rajasthan, India
2Department of Computer Science, Central University of Rajasthan, Kishan Garh, Rajasthan, India

3National Centre for Medium Range Weather Forecasting (NCMRWF), NOIDA, Uttar Pradesh, India

Received 11 September 2019; revised 18 February 2020; accepted 19 April 2020

Scheduling scientific workflow in a distributed computing resource is a challenging job. It involves heterogeneous

resource allocation to concurrent tasks in order to achieve the desired scheduling goal. In this paper, we are presenting a

multi-workflow Earliest Cycle Time algorithm, mECT. The objective of the algorithm is to reduce schedule length while

ensuring no deadlock situation occurs due to dependency violation. The algorithm is suitable for multi workflow

applications that deal with large data sets and run in a cyclic order. We have carried out extensive simulations to compare

the proposed algorithm with well known existing algorithms. We have also tested our algorithm for a low resolution (N48)

weather Unified Model (UM-10.2) in a simulated environment developed by the Met Office, United Kingdom. Results show

that mECT performs better in terms of shorter makespan and lesser deadlocks.

Keywords: Distributed computing, Heterogeneous cluster, Multi-workflow, Scheduling

Introduction

Execution of any scientific workflow in a cluster of

computers involves mapping of tasks in a distributed

heterogeneous computing environment. Scheduling is

required in order to optimise some of the performance

criteria, such as system utilisation, throughput,

efficiency, and reliability. Multiple task assignment in

a distributed computing system is an NP-complete

problem, Kumar et al.
1
, Shahul et al.

2
 Hence, a single

scheduling solution is not possible. Concurrent

scheduling of multiple applications is a well-

researched topic, and the references
3–9

present several

heuristics. However, scientific applications may be

data-intensive or computation-intensive. Some

applications need to optimise throughput, whereas

another application may require fast response time.

As a result, different algorithms are required to

schedule tasks in a distributed system.

Weather forecasting models are multi-workflow

applications that deal with large data sets and need

extensive computation time. Forecast models

typically depend on their own most recent previous

forecast. Thus, some models are dependent on

external data like real-time observational data or

output data from another model. One or more models

need to wait for these data before proceeding to

further downstream tasks. One way to represent

Numerical Weather Prediction (NWP) is to group

dependent tasks and introduce a common cycle

point based on start time. A forecast cycle point

spawns its successor when external driving data is

available. A real-time operation consists of a series of

forecast cycle points.

The present work involved scheduling weather

forecasting workflows in a distributed heterogeneous

computing platform. The workflow involves different

Weather Models (WM) that share data between them.

WMs process input and output temporal files

sequentially. During execution, some of these files are

accessed several times and shared between different

tasks. Oliver et al.
10

 reported that a batch of

workflows could be merged into a meta-scheduler.

The authors have developed 'cylc' - a workflow

engine for running suites of inter-dependent jobs. In

weather forecasting, multiple weather models run

concurrently. Hence we need to modify scheduling

solutions for concurrent execution of multiple

workflows in a cyclic order. Some references are

available on concurrent workflow scheduling

methods. Hwang et al.
11

proposed grouping of

individual applications into an application pool and

apply list scheduling heuristics. Different resource

allocation policies for high throughput computing are

———————

*Author for Correspondence

E-mail: rintu2013_csephd@curaj.ac.in

J SCI IND RES VOL 79 JUNE 2020

518

presented by Arabnejad et al.
12

 In this paper, we have

proposed a concurrent scheduling solution of WMs in

a heterogeneous platform.

Multi-workflow forecast cycles

Weather forecasting has multiple iterative

processes. The workflow engine needs to orchestrate

distributed suits of interdependent tasks. The

dependency relationship for a single forecast cycle

point may be represented by a Directed Acyclic

Graph, as shown in Fig. 1(a). Each node in the DAG

represents a task. Within a single forecast cycle point,

the dependency between tasks needs to be resolved.

Nodes a, b, and c in the DAG represents three

Weather Models (WMs). Nodes e and f represent two

post-processing or model output tasks. WMs are

dependent on their own most recent previous state,

called warm cycling, and may have inter-cycle

dependence between different tasks. In a weather

forecast suite, WMs do observation processing and

data-assimilation tasks for the next cycle point. In Fig.

1(a), u represents external data. The scheduler must

be able to branch model output data to multiple

downstream tasks without dependency violation.

We may consider a scenario 1, where, in real-time,

forecast cycle points run consecutively in a serial

manner. In Fig. 1(b) two such cycles having a time

gap between them is shown. Task a needs to wait

for external data, whereas task b and c need model

output from a. Post-processing is possible only when

WM b and c are completed. In this scenario, each task

in a cycle is dependent on the cycle preceding it. As a

result, a new cycle begins only after completion of the

previous cycle.

Scenario 1 is rather simplistic and will introduce

cycle wait time. A new cycle will start only when the

last task of the previous cycle is completed. If we

assume that the external driving data are available in

advance, we may consider scenario 2, where task a is

started without waiting for the completion of the cycle

preceding it. However, in that case, there is a

possibility of a dependency violation. Scenario 2 with

a dependency violation for task c is depicted in Fig.

1(c). Task a is dependent on external driving data as

well as its previous instance, task b and c are

dependent on their previous instances. As shown in

Fig.1(c), task c in cycle 2 started before completion of

task c in the upstream cycle. Hence, it may be

concluded that starting a whole new cycle without

completion of the previous cycle is not possible

unless inter-cycle dependencies are handled.

Scenario 3, a possible multi-cycle workflow, where

each task starts the moment its previous instance is

completed is depicted in Fig. 1(d). Warm cycled tasks

a, b, and c are dependent on their previous instances,

whereas tasks d and e are the model outcome. In

scenario 3, each task starts as soon as its previous

instance is complete. However, in this scenario, it is

assumed that there is no delay in the external data

source. The scheduler, handling such workflow, must

adapt dynamic external conditions like delay in

receiving external data, else; dependency violation

will bring the system down.

Platform

Our heterogeneous computing platform has clusters

of compute nodes connected by the high-speed

backbone, InfiniBand, shown in Fig. 2. Processors and

bandwidth of switches of different clusters may be

different. However, within the same cluster, all

processors are identical, i.e., we have C = 𝑐𝑖
𝑁
𝑖=1

clusters. For each ci, we have Pj { j=1 …m}, identical

processors. Processors execute tasks in a sequential

Fig. 1 — Job scheduling of consecutive forecast cycles

Fig. 2 — Heterogeneous clusters connected by InfiniBand

NATH et al.: MULTI-WORKFLOW CONCURRENT SCHEDULING IN HETEROGENEOUS COMPUTING CLUSTER

519

manner as it is done in a space sharing framework.

Processors in each cluster are connected to the

backbone by a switch. Sheikh et al.
13

presented a

computational model to measure communication

overhead for such a cluster.

For a cluster having Pj processors, parallel

execution time Tp of a task ti can be calculated using

Amdahl’s law:

Tp(ti, Pj) = (α +
1−α

𝑃𝑗
). Tp (ti, 1), where Tp (ti, 1) is

the execution time of ti in single processor and, α is

the fraction of ti that cannot be parallelised. We

assume that parallel tasks can be deployed in any

number of clusters without increasing communication

overhead.

Topcuoglu et al.
14

 proposed Heterogeneous Earliest

Finish Time (HEFT) algorithm for a fixed number of

heterogeneous processors. The HEFT algorithm

selects a task based on the highest rank, and insertion

based assignment is done for processor selection that

ensures the earliest finish time. A multi-workflow

application for heterogeneous distributed platform is

presented by Acevedo et al.
15

Problem formulation

Formally, in a multiple workflow (MF) situation,

each workflow in a set of MFset is represented as a

graph MFi = (Vi, Ei), i = 1, 2, …. Nw, where Nw, is the

number of workflows in MFset. Vi={1,2,…,Ni} is a set

of vertices or nodes representing Ni tasks in the i-th

workflow. and Ei = { ei,j | (i, j) ϵ {1, . . . , V }×{1, . . .

, V }} represents is a set of weighted edges between

vertices. Each directed edge ei,j represents

communication between task vi to task vj, whereas the

weight of each edge represents the volume of data

transmitted. A different number of processors may

execute tasks vi and vj. We have assumed all tasks are

non-preemptive.

A heterogeneous cluster has N resources having

Nt types. Each resource can have any one of the

types, ranging from 1 to Nt. Here resource signifies

single cluster of multi-core processors. We have

assumed zero communication costs between

processors in a cluster.

For any application model represented by DAG,

Let cik is computation cost of i
th
 task in k

th
 processor,

eij is communication cost between i
th
 task to j

th
 task, dij

is data transfer between i
th
 to j

th
 task. σ is a vector of

size n that maps tasks to processor. Φ is a set of all the

mappings. Then the objective function of a task

scheduling problem is expressed as:

σ = 𝑒𝑖,𝑗
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 (𝑑𝜎 𝑖 𝜎[𝑗]) + 𝑐𝑖𝜎 [𝑖]

𝑛
𝑖=1 ∀σ ∈ Φ

where 𝑒𝑖,𝑗
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 (𝑑𝜎 𝑖 𝜎[𝑗]) is the

communication cost between interacting tasks and

 𝑐𝑖𝜎 [𝑖]
𝑛
𝑖=1 is the computation cost for all mappings

between tasks to processors. Task scheduling

algorithms try to minimize the objective function.

We are proposing a multi-workflow scheduling

algorithm mECT. The objective of the algorithm is to

reduce makespan by ensuring no dependency

violation between inter-cycle tasks. The algorithm has

to ensure the concurrent processing of multiple tasks

from different workflows. All the workflows run

concurrently and in a cyclic manner, i.e., after

completion of the first cycle of the i
th
 workflow, MFi,

the second cycle of MFi starts, and the process

continues. In order to accommodate continuous

cycles, we have introduced Cycle Time Tc in the list

scheduling algorithm. For each workflow, Completion

Time (CT) has to be lesser than Tc .

For a given MFi, i = 1 ... Nw we need to maximise

{Tci – 𝐶𝑇𝑗
𝑛
𝑗=1 }, where Tci is the cycle time of i

th

workflow and 𝐶𝑇𝑗
𝑛
𝑗=1 is the completion time of all

the n tasks.

Multi-workflow Earliest Cycle Time Algorithm

HEFT is one of the preferred algorithms to improve

schedule length in any workflow. However, HEFT is

applies to a single workflow. Our problem is to

schedule all the workflows in a cyclic order. Hence

we are extending the scope of HEFT to schedule

multiple workflows having inter-cycle dependencies.

Similar to HEFT, mECT also prioritise tasks and

builds a queue of tasks. As mentioned in the previous

section, we have introduced a Cycle Time Tc in the

scheduling solution. The introduction of Tc will create

a priority list of tasks as well as estimated execution

time for a particular workflow.

The algorithm has two phases. Phase one computes

Cycle Time (Tc) of each workflow; phase two is the

mapping phase, where a priority queue based on

precedence constraints and Cycle Time is created.

Tasks from the queue are assigned to processors that

provide earliest finish time.

procedure mECT

{σ0 = initialization

while(1)

1. Compute Cycle Time Tc

2. Task setup

 Compute communication and computation cost

J SCI IND RES VOL 79 JUNE 2020

520

 σ = candidate solution

3. Priority queue and mapping }

In phase 1, Tc is computed from the task graph

based on maximum parallel execution time.

Pseudocode to calculate cycle time is given below:

1. While(1)

2. For all i=1 to N

3. For all j = 1 to mT(leveli)

4. For all k = 1 to Nt

5. Tc  Tc + max(cjk)

6. End while

N is the total number of tasks in a DAG, mT(leveli)

is the number of tasks in level i, Nt is the number of

resource type, max(cjk) is the maximum computation

cost of j
th
 task in k

th
 resource.

Two workflows, each having four tasks is shown in

Fig. 3. There are three resource; one is of resource

type 1, R1, and two are of resource type 2, R2. For

each task, the execution time for both types of

resources is given. For both workflow1 and workflow

2, N = 4, Nt = 2. Tc for workflow 1 is 4 + 6 + 8 = 18

and for workflow 2, Tc is 5 + 9 + 10 = 24.

Phase 2 of the algorithm is based on satisfiability

checking from a candidate solution based on Tc. In

each iteration, configuration checking is done for a

better solution. A candidate solution is generated

based computation cost, and processor availability

(PA) and n tasks are assigned among p processors.

Algorithm: mECT

Input: priority(ni), Tci

Output: n × p Look-up matrix with task assignment

PA(ni,pj)

1. Initialization of vector σ

2. Initialize computation cost 𝑐𝑖𝜎 [𝑖], cycle time Tc

3. Compute priority of tasks

priority(ni) = average(ci) +

 𝑚𝑎𝑥 [𝑑𝑖𝑗 + 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑛𝑖−1)]

4. Setup processor availability

 PA(ni,pj) = MAX{ avail[j], CT(ni-1,pj)}

5. While(1)

i. Re-compute completion time of task ni-1 on

processor pj : CT(ni-1,pj)

ii. Check candidate solution σ ∈ Φ

iii. If (Tci – 𝐶𝑇𝑗
𝑛
𝑗 =1) ≥ 0 then

iv. PA(ni,pj) = LPT{ EST[j], CT(ni-1,pj)}

v. else

vi. compute priority(ni)

6. compute PA(ni,pj)

7. return

Step 3, average(ci) calculates the average

computation cost of task ni in p processors and 𝑑𝑖𝑗

is communication cost between task i and j. Priority

assignment is done by traversing DAG upwards,

starting from a leaf node. The start time of processor

pj is calculated based on the completion time of pj of

the last assigned task.

Steo 4 determines processor availability based on

the computational capacity that minimizes ready task

ni. PA(ni,pj) is available time of processor pj for task

ni; avail [j] the time when processor pj is available for

execution of task ni. CT(ni-1,pj) is the Completion

Time of task ni-1 on processor pj. .

Step 5 (i to vi) schedules the ready tasks in

decreasing order and assigns processors based on the

lowest processing time LPT. At line 6, the processors

are mapped to tasks. When the lowest processing

times are calculated, tasks are placed in the priority

queue in ascending order. Makespan should be less

than the cycle time.

In order to explain the introduction of cycle time to

schedule multiple workflows, we consider two

workflows given in Fig. 3. We try to schedule both

the workflows. The computation cost of each task is

set as the mean value. The rank of each task is then

computed by traversing the graph upwards in a

recursive way, starting from the exit task.

The priority of each task is calculated as:

priority(ni) = average(ci) + 𝑚𝑎𝑥 [𝑑𝑖𝑗 +

 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑛𝑖−1)] , where average(ci) is the mean

computation cost of each task and 𝑚𝑎𝑥 [𝑑𝑖𝑗 +

 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑛𝑖−1)] is the recursive calculation of

priority for each task while traversing towards the

node starting from exit node. The path that gives

Fig. 3 — Two workflows. Notation: a/b , a:computation cost in

resource 1, b: computation cost in resource 2

NATH et al.: MULTI-WORKFLOW CONCURRENT SCHEDULING IN HETEROGENEOUS COMPUTING CLUSTER

521

maximum cost is considered. For example, to

calculate the priority of task 1 in workflow 1 (Fig. 3),

traversing starts from exit node 4 and continues until

node 1. Before traversing, the mean computation costs

of nodes are calculated. 𝑤𝑖 for node 4, 𝑤4 =
8+7

2
 = 7.5.

Similarly, the mean computation costs of other nodes

of workflow 1 are calculated. Priority of task 1 is for

the traversal 4  2  1 is 7.5 + 4 + 3.5 = 15, while

for the traversal 4  3  1 is 7.5 + 5 + 3.5 = 16.

Hence maximum, i.e. 16 will be the rank of task 1

of workflow 1. Ranks of all the tasks are given in

Table 1.

Resource allocation is done based on priority value

and precedence constraints. The task having the

highest priority is scheduled first provided the earliest

start time of the task ESTi is more than or equal to

earliest finish time EFTj of the task preceding it. In

the example shown in Fig. 3, task 5 is assigned to R2

as it has the highest priority value (21.5), and

processing cost in R2 is lesser compared to R1. The

next priority value is for task 7 (rank 17); however,

EST7 < EFT5. As the condition is not fulfilled, the

next highest priority 16 (task 1) is selected and

scheduled. Scheduling is shown in Fig. 4(a).

Makespan is 17. Clearly, makespan for workflow1 is

more than the cycle time. Hence the first candidate

solution is modified based on the cycle time, and the

final task queue is prepared, shown in Fig. 4(b).

Makespan of both the workflow is less than the

respective cycle times. For the given example (Fig. 3),

mECT fulfills both the cycle time conditions.

Experimental methodology

The performance of the proposed scheduling

algorithm mECT is evaluated using an extensive

simulation setup. We have explored wide ranges of

scenarios like the number of workflows, the number

of tasks in each workflow, heterogeneity of resources.

Statistically significant numbers of experiments were

carried out in a repeatable manner. We have studied

our algorithm on a Unified Model virtual machine

(VM) developed by Met Office, United Kingdom.

VM comes with access to the Met Office Science

Repository Service (MOSRS) and provides a simple

environment to test run scheduler. VM also has a

built-in test suite called rose-stem. The capability of

VM depends upon the allocated resources before

launch. Although VM is not capable of running an

HPC scale simulation, most modern laptops can run

low-resolution weather forecasting global model.

Through this simulation process, we wanted to

compare different task scheduling algorithms under

different numbers of workflows and resources. This

approach helped us in understanding the performance

of different algorithms under varied resources. For

simulation, we have generated synthetic test data,

like the number of workflows, the number of tasks

per workflow, and DAG parameters. We have used

the Pegasus workflow generator reported by Deelman

et al.
16

to generate workflows. Parameters used to

define DAG are width, density, regularity, and jump.

Width signifies the maximum number of tasks across

all levels, i.e., the maximum number of tasks that can

be processed concurrently. Density signifies the

number of edges between two levels. Uniformity of a

Table 1 — Task scheduling queue

Work flow Task number Initial priority Modified priority

1 1 16 17

1 2 11.5 16

1 3 12.5 15

1 4 7.5 11

2 5 21.5 21.5

2 6 15 11

2 7 17 16

2 8 9 8

Fig. 4 — a) Scheduling of workflow 1 and 2 with initial priority,

This results in violation of cycle time of workflow 1, b)

Scheduling with modified priority

J SCI IND RES VOL 79 JUNE 2020

522

DAG is measured with regularity value, a low value

of regularity signifies a wide variation of tasks at

different levels. Jump signifies jumping from level L

to (L+ jump) level. Width, density, and regularity can

have values between 0 – 1. Workflow and DAG

parameters are listed in Table 2.

We have considered resources having 1, 2, 4, or 8

clusters; each cluster can have only one of the two

types of resources (resources R1 and R2). The number

of processors in each type of resources varies between

16 and 128. Processors in a cluster are connected

to switch by 10 Gigabit (bandwidth 10 GBPS, latency

50 μsec) Ethernet. Switches are having the same

bandwidth and latency characteristics as the network

links. Backbone network connecting all the clusters is

having bandwidth 100 GBPS and latency 50 μsec.

In our experiments with a given set of clusters, we

have kept network characteristics fixed and varied

only workflow and DAG parameters. Heterogeneity

factor (β) is the same as the number of clusters, and

minimum processor speed is calculated as the speed

of the processor multiplied by β.

Results and Discussion

For performance analysis of mECT, we have

compared it with two algorithms, 1) Parallel

Heterogeneous Earliest Finish Time (pHEFT), an

implementation of HEFT for dynamic load

conditions, proposed by Barbosa et al.
17

, and 2)

Heterogeneous Critical Path and Area Based

Scheduling (HCPA), an implementation of CPA in a

heterogeneous cluster proposed by N’Takpe et al.
18

Each set of experiments was carried out with a

different number of tasks (10 or 20), we use this value

with the algorithm; for example, HCPA10, mECT20.

pHEFT schedules multiple DAGs having different

arrival times. It has a scheduling strategy to define

scheduling instants based on new job arrival and

change in hardware availability. HCPA uses a

novel virtual cluster methodology in order to

handle resource heterogeneity. It has different task

placement steps such that heuristics designed for

homogeneous resources can be adapted for a

heterogeneous environment.

The performance of the algorithm was evaluated

based on makespan, machine idle time, system

utilisation, and cycle time violation. The average

values of test run parameters are listed in Table 3, and

graphs are shown in Fig. 5.

Makespan

Makespan is considered as one of the significant

comparison matrices for any task scheduling

algorithm. It is also called schedule length, i.e., finish

time of the last task in a DAG. One of the objectives

of mECT algorithm is to minimise makespan.

However, there are different numbers of tasks in

different workflows. The makespan of a DAG having

more number of tasks will always be larger than the

one having a lesser number of tasks. Hence, we have

evaluated the schedule length ratio (SLR) as proposed

by Topcuoglu et al.
14

 It is defined as follows:

Schedule length ratio (SLR)

SLR is defined as the ratio of makespan to

minimum serial computation cost, i.e.

SLR =
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

 min 𝑐𝑖𝑗 𝑛∈𝑁
 , SLR ≤ 1 … (1)

 min 𝑐𝑖𝑗 𝑛∈𝑁 represents the summation of

minimum computation cost considering all the tasks

in a DAG are computed in series. SLR is a more

suitable comparison matrix for multiple workflows

scheduling algorithms.

For workflow 1 given in Fig. 3 and the schedule

given in Fig. 4, min 𝑐𝑖𝑗 𝑛∈𝑁 = 3 + 3 + 4 + 7 = 17

and makespan = 21, therefore from Eq. (1), SLR =
16

17
= 0.94. For a task scheduling algorithm, lower the

SLR, better is the algorithm. The variation of SLR

with the number of workflows is shown in Fig. 5(d).

In terms of SLR, mECT performed better with 20

tasks compared to 10 tasks, having SLR 0.6 and 0.7,

Table 2 — Workflow and DAG parameters

Number of workflows 2, 5, 8, 11, 15

Cost of computation (GFLOP) 10000 - 50000

Tasks per workflow 4, 10, 20

DAG width 0.1, 0.2, 0.8

DAG density 0.2, 0.4

DAG regularity 0.2, 0.8

DAG jump 1, 2, 4, 8

Table 3 — Average values of test run parameters

 mECT10 mECT20 pHEFT10 pHEFT20 HCPA10 HCPA20

Avg. idle time fraction 0.20 0.24 0.20 0.27 0.24 0.29

System utilisation 0.54 0.63 0.54 0.64 0.43 0.44

Cycle time violation 2.42 4.35 3.50 5.07 4.28 5.92

SLR 0.70 0.60 0.77 0.71 0.83 0.81

NATH et al.: MULTI-WORKFLOW CONCURRENT SCHEDULING IN HETEROGENEOUS COMPUTING CLUSTER

523

respectively. SLR of mECT is 10% and 18% lower

compared to pHEFT and HCPA in 10 task category,

whereas, in case of 20 task category, SLR

improvement is 16% and 35%.

To understand resource utilisation, apart from the

comparison matrices based on makespan, we have

studied behaviour of our algorithm in terms of average

idle time fraction (δidle) and system utilisation (η).

Average idle time fraction (δidle)

For any workflow, total idle time is measured from

the width of idle slots. For the example workflow 1

given in Fig. 3, and schedule sequence given in Fig. 4,

total idle time is calculated as 6. However, total idle

time will keep increasing as the number of tasks or

workflow increases. Hence total idle time cannot be

considered to be a performance measurement

criterion. Therefore we calculate average idle time

fraction, which is defined as the ratio of total idle time

to the width of busy interval.

𝜹𝑖𝑑𝑙𝑒 =
𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑖

𝑤𝑖𝑑𝑡 ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑢𝑠𝑦
𝑁
𝑖=1 , 0 ≤ δidle <1 … (2)

System utilisation (η)

System utilisation is the ratio of busy time intervals

to resource reserve time. Resource reserve time is

different from the makespan. From Fig. 4, makespan

for workflow 1 is 16; whereas, resource reserve

time is 21. In the case of cyclic scheduling of

multiple workflows, resource reserve time tends

to be equal to makespan. Resource reserve time

is equal to makespan when no cycle time violation

takes place.

η =
𝑤𝑖𝑑𝑡 ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑢𝑠𝑦

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑡𝑖𝑚𝑒
𝑁
𝑖=1 , η ≤ 1 … (3)

For the two workflows described in Fig. 3,

we calculate δidle and η using mECT

scheduling given in Fig 4(a). 𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒𝑖
2
𝑖=1 =

7, 𝑤𝑖𝑑𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑢𝑠𝑦 𝑖
2
𝑖=1 = 45,

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑡𝑖𝑚𝑒 𝑖
2
𝑖=1 = 63. Therefore,

δidle = 0.15, η = 0.71

Now we calculate the same parameters from Fig. 4(b).
 𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒𝑖

2
𝑖=1 = 6, 𝑤𝑖𝑑𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑢𝑠𝑦 𝑖

2
𝑖=1 = 44,

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑡𝑖𝑚𝑒 𝑖
2
𝑖=1 = 63. Therefore, from

Fig. 5 — Performance evaluation (a) Average idle time fraction (b) Utilisation (c) Violated cycle time (d) SLR

J SCI IND RES VOL 79 JUNE 2020

524

Eq. (2) we get δidle = 0.13 and from Eq. (3) we get η =

0.69.

Cycle time Tc is one of the key criteria for

scheduling multiple workflows that run concurrently

and in a cyclic order. If the makespan of any

workflow exceeds Tc, the next cycle of the same

workflow will not be able to start, and resource

utilisation will suffer in the long run. This was

established during simulation with more number of

workflows having a different number of tasks (10

and 20). From the graph shown in Fig. 5(c), it is clear

that mECT performed better in terms of system

utilisation with more number of workflows. In both

10-task and 20-task categories, mECT and pHEFT

show almost similar system utilisation, both

performed 20% better than HCPA.

We have evaluated violated cycle time in each set

of experiments with a different number of workflows.

From Fig. 4(a), violated cycle time is 1 (workflow 1,

cycle time 20, makespan 21), whereas, it is zero in the

case of 4(b). However, the number of cycle time

violation increases as the number of workflows is

increased. The violated cycle time with the number of

workflows is shown in Fig 5(b). Cycle time violation

with mECT is 44% lesser compared to pHEFT and

75% lesser compared to HCPA in 10 task category.

For 20 task category, mECT performance is 31% and

37% better compared to pHEFT and HCPA,

respectively.

For each set of experiments, the simulation was

carried out twice. Before the first run, the estimation

of the cycle time of each workflow is calculated

based on parallel execution time in the slowest

resource. For example, cycle time for workflow 1,

given in Fig. 3 is calculated as 4 + 6 + 8 = 18, and for

workflow2, cycle time is 24. Based on the results of

the first run, as shown in Fig. 4(a), cycle time is

modified to 16 and 21.

Conclusions

In this paper, we have presented the multi

workflow Earliest Cycle Time (mECT) algorithm to

schedule workflows concurrently in a heterogeneous

computing cluster. The algorithm enables cyclic

processing of multiple tasks without any deadlock.

We have done extensive simulation to evaluate the

performance of mECT and compared it with two

other algorithms. We have tested the algorithm to run

a low resolution (N48) Weather Model in a simulated

environment, Met Office Virtual Machine Box,

developed by the Met Office, United Kingdom.

Results indicate that mECT performs better in most

of the performance evaluation criteria, except

resource utilisation. We want to extend our work to

address QoS parameters like fair resource sharing and

resource on-demand, without increasing time

complexity.

Acknowledgment

We have used cylc workflow engine to run

N48 model in Virtual Machine Box. Cylc is

developed by Oliver et al.
10

 It is a workflow

engine for orchestrating complex distributed suites

of inter-dependent cycling (repeating) tasks, as well

as common non-cycling workflows.

References
1 Kumar S, Dubey G & Tiwari S, Advances in Data and

Information Sciences (Springer Singapore) 2020, 351–359.

2 Shahul S & Sinnen, Optimal Scheduling of Task Graphs on

Parallel Systems, in Int Conf on Parallel and Distributed

Computing Applications and Technologies (Otago, New

Zealand) 1–4 December 2008.

3 Canon L, Sayah M, & Héam P, Euro-Par 2019: Parallel

Processing (Springer International Publishing) 2019, 61–73.

4 Zhao H & Sakellariou R, Scheduling Multiple DAGs onto

Heterogeneous Systems, in Int Conf Parallel and Distributed

Processing Symposium (Research Academic Computer

Technology Institute, Greece) 25–29 April 2006

5 N'Takpe T & Suter F, Concurrent scheduling of parallel

task graphs on multi-clusters using constrained resource

allocations, in IEEE Int Symposium on Parallel & Distributed

Processing, (IPDPS, Rome, Italy), 25–29 May 2009.

6 Iverson M A & Özgüner F, Hierarchical, Competitive

Scheduling of Multiple DAGs in a Dynamic Heterogeneous

Environment, Distrib Syst Engng, 6(3) (1999) 112–120.

7 Bochenina K, Butakov N & Boukhanovsky A,

Static scheduling of multiple workflows with soft deadlines

in non-dedicated heterogeneous environments, Future Gener

Comput Syst, 55 (2016) 51–61.

8 Sun W, Zhang Y, & Inoguchi Y, Dynamic Task Flow

Scheduling for Heterogeneous Distributed Computing:

Algorithm and Strategy, IEICE Trans Inf Syst, E90–D (2007)

736–744.

9 Niyom A, Sophatsathit P & Lursinsap C, A fast predictive

algorithm with idle reduction for heterogeneous system

scheduling, Simulat Model Pract Theor, 63 (2016) 83–103.

10 Oliver H J, Shin M, & Sanders O, Cylc: A Workflow Engine

for Cycling Systems, J Open Source Softw, 3 (2018)

737–738.

11 Hwang E, Kim S, Yoo T, Kim J, Hwang S, & Choi Y,

Resource Allocation Policies for Loosely Coupled

Applications in Heterogeneous Computing Systems, IEEE

Trans Parallel Distrib Syst, 27 (2016) 2349–2362.

12 Arabnejad H & Barbosa J G, List scheduling algorithm

for heterogeneous systems by an optimistic cost table,

IEEE Trans Parallel Distrib Syst, 25 (2014) 682–694.

NATH et al.: MULTI-WORKFLOW CONCURRENT SCHEDULING IN HETEROGENEOUS COMPUTING CLUSTER

525

13 Sheikh M M, Khan A M, Thangavelu R P & Sinha U N,

On scalability aspects of cluster computing, J Sci Ind Res,

43 (2014) 642–645.

14 Topcuoglu H & Hariri S, Performance-effective and

low-complexity task scheduling for heterogeneous

computing, IEEE Trans Parallel Distrib Syst, 13 (2002)

260–274.

15 Acevedo C, Hernández P, Espinosa A, & Méndez V, A

Critical Path File Location (CPFL) algorithm for data-aware

multiworkflow scheduling on HPC clusters, Future Gener

Comput Syst, 74 (2017) 51–62.

16 Deelman E, Vahi K, Rynge M, Mayani R, da Silva R F,

Papadimitriou G & Livny M, The Evolution of the Pegasus

Workflow Management Software, Comput Sci Eng, 10

(2019) 1–11.

17 Barbosa J G & Moreira B, Dynamic scheduling of a batch of

parallel task jobs on heterogeneous clusters, Parallel

Comput, 37 (2011) 428–438.

18 N'Takpe T & Suter F, Critical Path and Area Based

Scheduling of Parallel Task Graphs on Heterogeneous

Platforms, in Int Conf on Parallel & Distributed Processing,

(Rhodes Island, Greece), 25–29 April 2006.

