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In this paper, designs and simulations of a new RF MEMS step-down structure of a capacitive shunt switch using 
different meandering methods are presented. The beam and dielectric materials are taken as gold and silicon nitride for the 
proposed switch. The switch required actuation voltage is 7.9 V for the non-uniform one meander technique. 
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Introduction 
In modern days, the RF MEMS switches are 

performing an essential trade-in all electronics device 
like reconfigurable antennas, filters etc., because of 
compact size, inexpensive and less power 
consumption.1–6 These switches possess leading-
performance characteristics while associated among 
the conventional switches like PIN and FET in 
applications.7,8 In previous studies, few RF MEMS 
Switch designs are proposed but they suffer from 
stiction problems, switching speed, isolation and 
mainly pull-in voltage.9–13 In this paper, a novel type 
structure along with serpentine meander is proposed 
to suspend the central beam to actuate at the minimum 
actuation voltage. 
 
Experimental Details 

Shunt type switch is designed with two anchors, 
attached at both ends, and the middle part of the beam 
is diverted towards the CPW lines to improve the 
status of the switch. The step structure switch has a 
silicon substrate with a high dielectric constant of a 
thickness of 840 μm. An insulating layer 1 μm thick is 
applied to the substrate to avoid leakage currents.  
A 2 μm thickness of the CPW having a CPW 
60/100/60 signal line is viewed above a dielectric 
layer to generate an RF signal. The depth of the 

dielectric layer is 0.3 μm, applied on this CPW to 
build a capacitive way for generating the signal. Here, 
the device having two moving pads are considered 
within the RF line, and the ground planes, located 
under the inner beam with 3 μm gap. The electrostatic 
force is employed on these electrodes and central 
beam for some movement of the device, and during 
the operation, the signal is isolated by the actuation-
voltage. The thickness of the central beam is consists 
of 3 μm and it is placed between the two side beams. 
The two anchors are located at the ground planes. So, 
the middle beam is placed among the anchors above 
the co-planar wave guide. 
 
Results and Discussion 

Accuracy, reliability and stability of a switch is 
defined by varying the electrostatic force over the beam 
due to applied actuation voltage. The non-uniform one 
meander step structured switch possesses a stress value 
of 13.9 MPa without perforation and 11.4 MPa with 
perforation by applying a force of 21 uN. The buckling 
effect happens when the voltage exceeds a threshold 
value, which is defined as a critical voltage. 
௖௥ߪ  = గమఌ௧మ್ଷ௟మ್ሺଵି௩ሻ       … (1) 

 

Where “ bl ” beam length, and “ ” is defined as the 

material poisons ratio. The above Eq. 1 is called a Euler 
buckling criterion. The device needs to resist significant 
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(critical) stress on the tensile stress to minimize the 
impact of beam stability. Numerical analysis showed 
that the compression stress of gold and aluminium as 5–
20 MPa, and 4–15 MPa. From the observations, the 
thickness of the beam decreases then the buckling effect 
increases for various beam materials. So, there should be 
a trade-off between beam thickness and length to 
minimize the effect of buckling. Therefore, the beam 
width for the step structure device has taken 1.2 µm with 
gold as beam material to withstand tensile stress as well 
as the critical stress. 

As the length of the meandering section increases 
the spring constant and pull in voltage decreases but if 
meandering section increases at a certain point there 
is no change in spring constant and pull-in voltage 
value. So, there should be a tradeoff between span 
beam length and spring constant. Here meandering 
section with 100 µm span beam length results in low 
actuation voltage. While the meandering section 
increases the spring constant decreases even though 
higher meandering section switch was not feasible for 
fabrication because of its complexity and poor 
inductance tuning. Non-uniform one meander with a 
gap of 3 µm having a beam thickness of 1.2 µm 
shows spring constant of 2.1 N/m consider among all 
the cases based on its overall switch performance. 

Thus, the spring constant of the proposed switch 
can be estimated as 
 ଵ௞೐೑೑ = ଵ௞భ + ଵ௞మ + ଵ௞య + ଵ௞ర + ଵ௞ఱ + − − −− + ଵ௞೙   … (2) 

 
Where k1, k2, k3---kn are the individual spring 

constants. ܭ௘௙௙ =  ௠    … (3)ܭ4
By using various serpentine meanders, the spring 

constant of the structure is minimized. From the 

results (Table 1) it observed that non-uniform 
meanders show very low spring constant value when 
compare with the uniform. As the meandering 
sections increases spring constant value decreases. 
From Table 1, the different spring constant value for 
different span beam length of the various serpentine 
meanders with a thickness of the beam of 1.2 µm and 
an air gap of 3 µm. The Non-uniform 3-meander 
gives low spring constant value than the rest of the 
meanders. But due to fabrication complexity, 2, 3-
meandered serpentine structures are ignored, only 
Non-uniform one meander having a spring constant 
value of 2.14 N/m has taken for switch design. 

To achieve minimum pull-in voltage various 
meandering techniques are used. Here, the pull-in 
voltage is calculated by 
 ܸ = ට ଼௄ଶ଻ఢబௐೢ ݃଴ଷ     … (4) 

 

where, ‘ԑ0’ is permittivity of free space, ‘g0’ is   gap 
between the electrodes, W, w -Area of the overlap. 

The beam shows abrupt displacement at 7.9 V and 
falls on the dielectric medium where further bending is 
not possible and is clearly represented in Fig. 1. From 

 
 

Fig. 1 — Displacement Vs voltage of proposed RF MEMS Switch  (a) by Intellisuite software (b) by COMSOL software 

Table 1 — Comparison of Spring constants of the proposed RF 
MEMS Switch 

Span 
Beam 
length 

Spring Constants 

Uniform Meander Non-Uniform Meander 

Without 
meander 

One-
Meander 

Two-
Meander 

Three-
Meander 

One-
Meander 

Two-
Meander 

Three-
Meander 

100 16.3 7.9 5.1 2.1 0.1 0.01 
110 12.3 7.4 4.9 2 0.04 0.01 
120 9.4 6.8 4.6 1.86 0.04 0.01 
130 7.4 6.3 4.3 1.81 0.04 0.01 
140 5.9 5.2 3.9 1.5 0.04 0.01 
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the results (Table 2), it is mentioned that the actuation 
voltage decreases with thickness of beam is 1.2 µm and 
air gap of 3 µm for increasing Meanders. Minimum 
actuation voltage will improve the acceleration of the 
device. From the results, it has been observed that step 
structured switch with non-uniform one meander section 
possessing a good switching time of 89 µs with a Vp of 
7.9 V. Two, three meandered step structures also possess 
high switching time when compare with one meandered 
section because of its low spring constant.  So, there 
should be a trade-off between spring constant and 
switching time to achieve high reliability of the switch. 
 
Conclusions 

This research work presented a new type of step type 
switch for less pull-in voltage. The variation of span 
beam lengths includes a connector beam and spam beam 
length, describes the performance of two meander 
sections. Due to the device optimization and fabrication 
feasibility the device with one non-uniform meander 
having a span beam length of 100 µm considering 
actuation area of  (100 µm x 315 µm) offer the actuation 
voltage as low as 7.9 V are optimized for proposed 
switch design. It is mentioned that the proposed switch 
with three meanders of both uniform and non-uniform 
showed less pull in voltage but actually due to 
fabrication complexity and some reliability issues, non-
unifrom one meander section is good enough to 
fabricate a shunt switch. The proposed device shows 
better performance by non-uniform meanders. 
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Table 2 — Comparision of  Pull-in voltages of the proposed RF 
MEMS Switch 

Span 
Beam 
length 

Pull-in voltages 

Uniform Meander Non-Uniform Meander 

Without 
meander 

One-
Meander 

Two-
Meander 

Three-
Meander 

One-
Meander 

Two-
Meander 

Three-
Meander 

100 21 15 10.1 7.9 1.9 0.58 

110 20 14.5 10.1 7.5 1.1 0.58 

120 16.5 13.9 10.0 7.3 1.1 0.58 

130 14.6 13.5 10 7.2 1.1 0.58 

140 13 12.2 9.9 6.7 1.1 0.58 


