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In machine vision as well as image processing applications, multi-focus image fusion strategy carries a prominent 
exposure. Normally, image fusion is a method of merging of information extracted out of two or more than two source 
images fused to produce a solitary image, which is much more instructive as well as much suitable for computer processing 
and visual perception. In this research paper authors have devised a novel image quality enhancement algorithm by fusing 
multi-focus images, in short, termed as HoEnTOA. Initially, contourlet transform is incorporated to both of the input images 
for generation of four respective sub-bands of each of input image. After converting into sub-bands further holoentropy 
along with proposed HoEnTOA is introduced to fuse multi-focus images. Here, the developed HoEnTOA is integration 
of Taylor series with ASSCA. After fusion, the inverse contourlet transform is incorporated for obtaining last fused image. 
Thus, the proposed HoEnTOA effectively performs the image fusion and has demonstrated better performance utilizing 
the five metrics i.e. Root Mean Square Error with a minimum value of 3.687, highest universal quality index value of 
0.984, maximum Peak Signal to Noise Ratio of 42.08dB, maximal structural similarity index measurement of 0.943, as well 
as maximum mutual information of 1.651. 
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Introduction 
Normally, multi image fusion intends to combine 

two or more than two images, which is captured by 
various camera locations of similar picture to produce 
other better image with sharp content and identical 
focus. It is generally not possible to get an image 
with each of the related object in focus because of 
imperfect depth-of-focus in optical lenses.1,2 Optics of 
lenses with high degree of intensification experiences 
due to restricted depth of field issues. The depth of 
field becomes lesser because of, high intensification 
and focal length of lens. Thus, lesser objects in an 
image are focused although3,4, at certain time people 
desire to gain an image with more focused/visual 
clarity objects. The perfect circumstance in total 
image is that it is focus or in apparent, which directs 
to emergence of multi-focus image fusion technology. 
The concept of multi-focus image fusion involves 
various images with dissimilar focus location to be 
combined for generating new fused image with 
unlimited depth of field. The main intention is to 
improve perceptible depth of filed by combination of 

objects in various fields of focus. Therefore, image 
fusion technology plays a significant job for many 
application domains, like biomedical imaging as well 
as computer vision. Moreover, multi focus image 
fusion is a broader as well as inevitable area of 
research in image processing field.5,6 Typically, several 
images of similar scene are acquired for improving 
robustness of image processing structure. On the other 
hand, analyze and observations a sequence of images 
individually are not proficient and suitable. Moreover, 
image fusion is an efficient approach for solving the 
issues through integrating corresponding information 
extracted out of numerous images for producing a 
fused solitary image7, highly beneficial for the machine 
perception as well as human perception, ghost effect 
was resolved by Shaikh et al.8 Weighted averaging 
involving image fusion scheme along with Tsallis 
entropy was investigated via researchers.9  

Picture combination is a technique for incorporating 
different picture qualities into a single picture and in 
clinical imaging research field picture combination 
facilitates a fit and exact analytic methodology. Final 
joined pictures gained out of imaging instruments/ 
modalities are essential element in different areas of 
application, namely computer vision, geographical 
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imaging, microscopic imaging, medical imaging, 
robotics, remote sensing and so on.10–12 Image fusion 
tool generated images, which are more visibly and easily 
identified through integrating information of numerous 
images of similar object. The cameras cannot replicate 
the panoramic outlook as source images are restricted by 
camera’s focal length. Thus, fused images are most 
commonly utilized in visual perception and machine 
learning, while compared with other single source 
image. The major intention of image fusion is 
decreasing quantity of data during network transmission 
and producing new images are more precise and 
informative for computer processing and visual 
perception.13 

The selection of clear image pixels from source 
regions is the fundamental idea for executing image 
fusion. In addition, average observed images based on 
particular sharpens is used for formulating fused image. 
Along with this, optical out of focus is a main resource 
of degradation of image quality in multi focus image 
fusion. The image fusion scheme enhances the reliability 
and data storage of image content and it also provides 
good interpretation. The following needs must be 
satisfied in image fusion that is image fusion process 
must preserve all significant information of source 
images, image fusion process must acquiesce several 
fake information. Furthermore, image fusion procedure 
must proficient of reducing limitations, like mis-
registration.3 

In recent years, various efficient image fusion 
techniques are developed using multi scale 
decomposition. Mainly, there are three levels at which a 
multi-focus image fusion strategy can be executed. First 
one is at pixel level, second one is decision level and last 
one is feature level.14,15 Further, the multi-focus image 
fusion strategy is sub-categorized in two parts at pixel 
level i.e. transform domain as well spatial domain 
schemes. The approaches using spatial domain involves 
guided filtering16, Principal Component Analysis17 and 
image fusion techniques used human perceptions  
and same features14,18 and others. In addition, fusion 
techniques using transform domain, which are 
principally analyzed in Multi resolution Geometric 
Analysis (MGA). Another classification of image fusion 
strategy involves a separation consisting of local energy 
functions like image fusion strategies relied on trained 
dictionaries, wavelets, shearlet, contourlet, discrete 
cosine transform as well as ripplet , artificial neural 
network abbreviated as ANN. For instance, shearlet 
along with pulse coupled neural network abbreviated as 

PCNN, contourlet along with PCNN, contourlet along 
with SCM.15  

This research is focused to design the multi-focus 
image fusion through proposing Taylor ASSCA based 
on two input images. The contourlet transform is 
initially employed to input images for generation of 
four sub-bands for both the input images, and then the 
fusion technique is implemented by integrating sub-
bands of image-1 and image-2 based on holoentropy 
and the proposed Taylor ASSCA to get the four sub-
bands. Here, the Taylor-ASSCA is newly developed 
by incorporating Taylor series along with ASSCA 
where the ASSCA is the combination of ASO as well 
as SCA. Generated results from the fusion phase are 
then forwarded to the inverse contourlet transform to 
get the fused output image. 
Major involvement of this research involves: 
 
Developed Taylor ASSCA For Image Fusion: 

An effective image fusion mechanism is developed 
using the proposed Taylor ASSCA for obtaining the 
last fused image from input image-1, and image-2. 
The Taylor ASSCA is the combination of Taylor 
series with ASSCA. Moreover, the holoentropy is also 
introduced with the Taylor ASSCA for choosing the 
optimal fusion coefficient. However, the solution with 
maximal MI, PSNR, UQI, SSIM, and minimal RMSE 
is chosen as the optimal solution using maximization 
fitness objective. 
 
Related Work 

Here, several present image fusion techniques  
with their limitations are described, which stimulate 
researchers for devising a new approach to execute 
image fusion.  

Venkatrao et al.12 devised a fusion strategy  
relied on holoentropy whale fusion i.e. HWFusion for 
fusing medical images. Initially for input images 
consideration two magnetic resonance imaging i.e. MRI 
images were incorporated as well as further wavelet 
transform was imposed to yield four sub-bands for  
both of the input images. Further fusion of  
wavelet coefficients was accompanied by utilizing two 
attributes i.e. whale fusion factor as well as entropy 
which were further assessed via holoentropy as well as 
SP-whale optimizer. Optimum fusion factor was 
selected with the help of SP-whale algorithm. At final 
step inverse of wavelet transform was incorporated for 
generation of fused image. But the devised model was 
unsuccessful to incorporate Bayesian model to enhance 
performance.12 
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Zhao et al.19 devised a image fusion strategy to 
fuse multi-focus images utilizing deep convolutional 
network i.e. DCNN. For achievement of greater 
efficiency the resulted outputs were simultaneously 
under supervision during training process. But, the 
devised fusion model was unsuccessful for increasing 
performance for fusion of multi-focus images as well 
as convolutional neural network. 

Yang et al.20 devised a fusion model known as fast 
discrete curvelet transform i.e. FDCT to fuse  
multi-focus images. This model targeted two 
problems i.e. spatial based fusion as well as texture 
selection. At first, a model FDCT was developed 
based on frequency model involving human visual 
system features further developing SML technique 
with PCNN for extraction of frequency related 
comprehensive information. But the developed fusion 
model was unsuccessful to incorporate color images. 

 Huang et al.21 developed an algebraic multi-grid 
i.e. AMG based fusion model. In this model initially 
grids were extracted from the source images via 
affinity matrix with the help of coarse grids. For 
approximation, there was preservation of edges as 
well as textual information. The calculation of MSE 
values were done to detect higher fidelity blocks with 
the help of input images. But the devised fusion 
technique was unsuccessful to incorporate various 
other metrics to assess the performance. 

Li et al.22 developed Deep Regression Pair Learning 
abbreviated as DRPL, for fusing multi-focus images. 
This approach was utilized for converting entire image 
into binary mask devoid of using patch function, and 
then blur point was computed in the region of defocused 
or focused boundary. After that, the complementary 
source images were taken as input for generating two 
binary masks for improving the performance of the 
system. However, the alignment between multi-focus 
images is the difficult task because of the presence of the 
camera as well as object motion. 

Wen et al.23 developed Convolutional Neural network 
abbreviated as CNN, for fusing multi-focus images. 
Initially, CNN was trained with clear image patches and 
its blurred versions for getting binary classifier. 
Consequently, the source images were partitioned into 
several overlapping patches, and then the confidence 
score was computed for every patch. After that, the 
initial clarity map was created, and refined the clarity 
map during consistency of verification stage to get the 
fused image. Here, the Mutual Information (MI) was 
found better, but the method needs large iteration to 
get the final output.  

Xu et al.24 designed unsupervised model using 
gradients as well as connected regions, termed GCF 
for a multi-focus image fusion. In addition, Mask-Net 
was introduced for generating the binary mask. Then, 
the gradient relation map was employed for obtaining 
the solution domain and accelerates the convergence. 
The major drawback of this method is that some  
mis-classified pixels, blurs or lines were still exists in 
the image.  

Zhang et al.15 devised a multi-focus image fusion 
strategy relied on convolutional neural network, 
termed as IFCNN. At first, extraction of image salient 
aspects was accompanied out of input images via two 
convolutional layers. After that, the convolutional 
features were fused using suitable fusion rule that  
was chosen based on the input image type. At last, the 
fused features were reconstructed for producing 
informative fusion image. The method failed to devise 
an architecture based on definite characteristics of 
target image database.  

Most of the times multi-focus images possess 
de-focused/out of focused areas because of the limited 
availability of focused images. As a result quality 
level of fusion deteriorates. Zhao et al.19 devised a 
new technique for fusing multi-focus images relied on 
deep convolutional neural network i.e. DCNN along 
with a naturally enhanced technique. 
 
Challenges 

Reinforcement to carry out proposed work via 
facing below challenges: 

Li et al.22 developed DRPL for fusing the multi-
focus images. However, the patch-processing problem 
was solved effectively, but failed to use adaptive 
concept in the method for biomedical image fusion. 

Zhang et al.15 utilized IFCNN for fusing multi 
focus images. Here, the scheme is trained in 
end-to-end behaviour with some post-processing 
procedure, but still suffer from blurring or 
low-contrast effect.  

Xu et al.24 introduced GCF for solving stumbling 
block of the vanishing gradients, but the method takes 
more period and attempt for establishing ground truth 
table manually.  

Zhao et al.19 employed deep CNN for a multi-focus 
image fusion with enhancement. Here, performance 
of system was found better, but still the training of 
images need for fusion is very challenging. 

Huang et al.21 utilized AMG for tacking issues of 
multi focus image fusion in the image quality 
deterioration, like fake edges, ringing effects, and the 
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contrast decrease. However, this method does not 
integrate multiple metrics for eliminating the 
interference of the abnormal evaluation behavior. 
 

Multi-Focus Image Fusion Using the Proposed 
Holoentropy and Taylor-Assisted Optimization 
Algorithm  

This section presents the proposed Taylor ASSCA 
technique to combine images which are multi-focus. 
At first, two source images are considered as input 
and contourlet transform25 is incorporated to both of 
the input images to generate four frequency sub-band 
coefficients, named as, low–low i.e. LL, high–low i.e. 
HL, and high–high i.e. HH as well as low–high i.e. 
LH. Generated four sub-bands of both the input 
images undergo through fusion process relied on 
holoentropy26 as well as proposed Taylor–ASSCA. 
The development of Taylor–ASSCA is accompanied 
via Taylor series integration27, ASO28, and SCA.29 In 
addition, the holoentropy identifies the fusion factor 
for every sub-band images using entropy computed 
for input image. The result obtained from the fusion 
phase is fed to inverse contourlet transform to get 
final fused image.  
 
Generation of Four Sub Bands Using Contourlet Transform 

Let us assume two input images  qpG , and 

),( hgD  are the two input images, and it is given to 
CT in order to extract image sub-bands. Contourlet 
transform is the multiscale and the multidirectional 
transform in order to capture geometrical features of 
the 2D images. Thus, CT is more advantageous for 
images based on the contour as well as fine textures. 
Here, each band refers to the energy and frequency of 
the contourlet coefficient. Thus, the method is utilized 
to convert the functions into different frequencies, and 
down sampling is performed with Low pass Filter i.e. 
LPF as well as High pass filter i.e. HPF. Obtained 
contourlet bands via the application of CT have 
different properties. However, the down sampling and 
vertical filtering is devised to produce four 
sub-images. The low frequency images are 
determined by LPF by performing the convolution 
operation of filter and input function, and is expressed 
by,   

 
𝐺௅ሺ𝑚,𝑛ሻ ൌ ∑ ∑ ሾ𝐺ሺ𝑚,𝑛ሻ ∗ 𝐿ሺ𝑚 െ 𝑢,𝑛 െ 𝑣ሻሿோ

ୀିோ
ோ
௨ୀିோ௩   

 …(1) 
 

𝐷௅ሺ𝑚,𝑛ሻ ൌ ∑ ∑ ሾ𝐷ሺ𝑚,𝑛ሻ ∗ 𝐿ሺ𝑚 െ 𝑢,𝑛 െ 𝑣ሻሿோ
ୀିோ

ோ
௨ୀିோ௩   

 …(2) 

The LPF function in above equations is denoted as 
ሺ𝑚 െ 𝑢,𝑛 െ 𝑣ሻ and R  represents total pixels, the 
symbol  refer to convolution operator, and the terms 
𝐺ሺ𝑚,𝑛ሻ and ),( hgD are the two input images. In 
addition, the high frequency sub images are identified 
using the below expression,  
 

𝐺ுሺ𝑚,𝑛ሻ ൌ ∑ ∑ ሾ𝐺ሺ𝑚,𝑛ሻ ∗ 𝐻ሺ𝑚 െ 𝑢,𝑛 െ 𝑣ሻሿோ
ୀିோ

ோ
௨ୀିோ௩

       …(3) 
 

𝐷௅ሺ𝑚,𝑛ሻ ൌ ∑ ∑ ሾ𝐷ሺ𝑚,𝑛ሻ ∗ 𝐻ሺ𝑚 െ 𝑢,𝑛 െ 𝑣ሻሿோ
ୀିோ

ோ
௨ୀିோ௩

                   …(4) 
 

where, the function of HPF is denoted as 𝐻ሺ𝑚 െ
𝑢, 𝑛−𝑣. Thus, for image 𝐺𝑚,𝑛 four sub band images, 
like 𝐺௅௅ሺ𝑚,𝑛ሻ,𝐺௅ுሺ𝑚,𝑛ሻ, 𝐺ு௅ሺ𝑚,𝑛ሻ, 𝐺ுுሺ𝑚,𝑛ሻ are 
produced. Therefore, the LL, LH, HH, HL equations 
of input image-1 is given by, 

 

𝐺௅௅ሺ𝑚,𝑛ሻ ൌ ∑ ∑ ሾ𝐺௅ሺ𝑚,𝑛ሻ ∗ 𝐿ሺ𝑚 െ 𝑢,𝑛 െ 𝑣ሻሿோ
ୀିோ

ோ
௨ୀିோ௩   

 …(5) 
 
𝐺௅ுሺ𝑚,𝑛ሻ ൌ ∑ ∑ ሾ𝐺௅ሺ𝑚,𝑛ሻ ∗ 𝐻ሺ𝑚 െ 𝑢,𝑛 െ 𝑣ሻሿோ

ୀିோ
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௨ୀିோ௩    

 …(6) 
 
𝐺ு௅ሺ𝑚,𝑛ሻ ൌ ∑ ∑ ሾ𝐺ுሺ𝑚,𝑛ሻ ∗ 𝐿ሺ𝑚 െ 𝑢,𝑛 െ 𝑣ሻሿோ

ୀିோ
ோ
௨ୀିோ௩    

 …(7) 
 
𝐺ுுሺ𝑚,𝑛ሻ ൌ ∑ ∑ ሾ𝐺ுሺ𝑚,𝑛ሻ ∗ 𝐻ሺ𝑚 െ 𝑢,𝑛 െ 𝑣ሻሿோ

ୀିோ
ோ
௨ୀିோ௩    

 …(8) 
 

where, the low frequency coefficient matrix is 
denoted as 𝐺௅ሺ𝑚,𝑛ሻ as well as the term as 𝐺ுሺ𝑚,𝑛ሻ, 
refer to high frequency coefficient matrix. 

For 𝐷ሺ𝑚,𝑛ሻ, four contourlet coefficient matrices, 
such as 𝐷௅௅ሺ𝑚,𝑛ሻ,𝐷௅ுሺ𝑚,𝑛ሻ, 𝐷ு௅ሺ𝑚,𝑛ሻ,𝐷ுுሺ𝑚,𝑛ሻ 
are produced.  
 
Image Fusion Using Holoentropy and the Proposed Taylor 
ASSCA 

Once the transformation of source images is 
accomplished to yield four frequency sub-band 
coefficients, the process of image fusion is incorporated 
utilizing holoentropy as well as the developed Taylor 
ASSCA. The Taylor ASSCA is developed newly  
by combining Taylor series along with atom search  
sine cosine algorithm abbreviated as ASSCA. The 
holoentropy and the proposed Taylor ASSCA is briefly 
explained below.  
 
Holoentropy-Based Image Fusion 

This sub–section explains holoentropy approach for 
fusing multi-focus images through calculating joint 
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fusion probability in every image sub bands. Entropy 
becomes popular metric, which is utilized for fusing 
the image. If fused image possess higher amount of 
information extracted out of the source image; value 
gained via entropy is low; hence the better result 
cannot be obtained. Therefore, holoentropy has been 
introduced for measuring the unpredictability of the 
information present in the image. The better feature 
search is achievable in holoentropy than entropy-
based procedure. The proposed fusion rule is defined 
by weighted coefficient by considering every sub 
band is expressed by,  

 

DGP )1(     …(9) 
 

where, 
2

 


T

. Here, T refer to fusion factor 

based on the proposed Taylor ASSCA, 
 signifies 

the fusion factor using holoentropy. The fusion 
principle relied on the weighted coefficient for fusing 
image sub bands may be illustrated as, 
 
𝑃௅௅ሺ𝑚,𝑛ሻ ൌ  𝛼𝐺௅௅ ሺ𝑚,𝑛ሻ െ  ሺ1 െ 𝛼ሻ𝐷௅௅ሺ𝑚,𝑛ሻ  
                  …(10) 
 

𝑃௅ுሺ𝑚,𝑛ሻ ൌ  𝛼𝐺௅ு ሺ𝑚,𝑛ሻ െ  ሺ1 െ 𝛼ሻ𝐷௅ுሺ𝑚,𝑛ሻ        
                  …(11) 
 

𝑃ு௅ሺ𝑚,𝑛ሻ ൌ  𝛼𝐺ு௅ ሺ𝑚,𝑛ሻ െ  ሺ1 െ 𝛼ሻ𝐷ு௅ሺ𝑚,𝑛ሻ  
                  …(12) 
 

𝑃ுுሺ𝑚,𝑛ሻ ൌ  𝛼𝐺ுு ሺ𝑚,𝑛ሻ െ  ሺ1 െ 𝛼ሻ𝐷ுுሺ𝑚,𝑛ሻ   
                  …(13) 

 

The fused sub image coefficients are computed 
using holoentropy and Taylor ASSCA in which the 
Taylor ASSCA is elaborated in below section.  
 

Optimal Fusion Coefficient Selection using the Developed 
Taylor ASSCA 

The developed Taylor ASSCA is utilized in order to 
select the best optimal fusion coefficient for better 
image fusion. The Taylor ASSCA is a new fusion 
approach by incorporating Taylor series and ASSCA. 
Complex variables are described through Taylor series, 
which is expansion of the function into limitless 
summation of terms. It helps for assessing integrals as 
well as infinite summations via recognizing Taylor 
series. In addition, dealing of higher order terms in a 
single step through Taylor series is an effective way. In 
addition, the system can easily resolve non-linear 
issues with the difficult restrictions. On the other  
hand, ASSCA provides the better trade-off among the 

exploitation and exploration, which includes efficiency 
to developed method. Additionally, the method boosts 
up the convergence process and improved the solution 
diversity and performance. Thus, the combination of 
Taylor series and ASSCA is carried out for improving 
the overall system performance of algorithm. 
 
Solution Encoding 

Solution encoding is a illustration of solution 
vector in order to select the optimal fusion factor  
that is produced the fusion probability for fusing  
sub-image coefficients. Let us assume 

},,,{ 21 xr ZZZZ  be the solution set containing x

quantity of solutions. Here, every solution in rZ is the 

group with dimension n1 , where n refer to number 
of the produced parameters. From the solution x , the 
proposed Taylor ASSCA selects the optimal solution 
using the fitness function to compute the best fusion 
coefficient value.  

Steps followed in developed Taylor ASSCA are 
demonstrated as. 
 
Step 1: Initialization 

The solution is initialized in first step in the random 
way along with another algorithmic parameters 
expressed by, 
 

mcJJJJJ mc  1};,,,,,{ 21 
  …(14)

 

where, the term cJ refer to thc solution, and the total 

solutions is indicated as m .  
 
Step 2: Computation of fitness 

The objective function is estimated using fitness 
function equation for every solution. However, fitness 
function is considered as maximization function 
where the solution with minimum fitness value is 
chosen as best solution. However, function used to 
compute the fitness is expressed by, 

 

 212

1
EEE   …(15) 

 

where, the term 1E signifies the fitness function  
based on variables, and the mathematical model is 
given by, 

 USLM EEEEEE  5

1
1  … (16) 

where, the term ME , E , LE , SE , and UE represents 

the function mutual information, PSNR, RMSE, 
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SSIM, and UQI. The fitness function using Joint 

Holoentropy is denoted as 2E , and is expressed by, 

 
 VDGXE ,,2   …(17) 

 
where, the terms G , and D represents the two input 
images and V fused image.  
 
Step 3: Update solution based on developed Taylor ASSCA  

The update process of developed Taylor ASSCA  
is done through combining Taylor series with 
ASSCA. The update equation of ASSCA is expressed 
by Eq. 18 where, 𝐽௖ሺ𝑦ሻ depicts position of 𝑐௧௛ atom at 
y iteration and 𝐽௖ሺy ൅ 1ሻ utilized to denote the update 
position of 𝑐௧ℎ atom at iteration (y+1) and, 𝐴஻ாௌ்

 

shows best fitness value, 𝑀 depicts highest number of 
iterations, 𝑅𝑎𝑛𝑑௖, 𝑅𝑎𝑛𝑑௙ depicts random numbers 
generated in [0,1], 𝑎௖ሺ𝑦ሻ depicts velocity of 𝑐௧ℎatom 
at y iteration, β denotes depth weight, 𝑃௔ሺ𝑏ሻ depicts 
mass of 𝑎௧ℎ atom at 𝑏௧ℎ iteration. η depicts multiplier 
weight. || depicts absolute value.  

Let 
  

2

713203

||)(),(||

)()(
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)(21
1

yJyJ

yJyJ
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lylRand
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Af a
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






 
 





  

where 𝐴஻ாௌ்
 shows best fitness value, 𝑀 depicts highest 

number of iterations, 𝑅𝑎𝑛𝑑௖, depicts random number in 
[0,1], β denotes depth weight, Here 𝑃௔ሺ𝑏ሻ depicts mass 
while η depicts multiplier weight. || depicts absolute 
value. Then, Eq. 18 is rearranged as Eq. 19. 

To enhance performance of the system and to solve 
optimization problems of ASSCA, Taylor series is 
utilized. As per Taylor series, the update equation is 
given by, Eq. 20, further Eq. 20 may be rearranged as 
Eq. 21.  

Thereafter, substituting Eq. 21 in Eq. 19, the solution 
is depicted through Eq. 22, where, velocity is denoted as 

)(yac , the depth weight is indicated as  , the term 
refer to multiplier weight, and the mass is represented as 

)(bpa  , g1 depicts direction of movement, g2 depicts how 

far the movement has to be whether in opposite direction 
or in same direction of the target, g3 facilitates arbitrary 
weight to target. After arranging terms of Eq. 22, it can 
be represented as Eq. 23.  
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The final update equation of the proposed Taylor 
ASSCA for better image fusion is expressed through 
Eq. 24 where,
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and the velocity is denoted as )(yac , the depth 

weight is indicated as  , the term  refer to 
multiplier weight, and the mass is represented as 

)(bpa . g1 depicts direction of movement, g2 depicts 

how far the movement has to be whether in opposite 
direction or in same direction of the target. 
 

Step 4: Re-evaluate fitness:  
The fitness value is estimated by the objective 

function specified in Eq. 15 such that the fitness measure 
with minimal value is declared as best solution.  
 

Step 5: Termination:  
Until the best solution is attained for multi-focus 

image fusion, the aforementioned steps are repeated.  
 

Results and Discussion 
In this section comparative analysis of developed 

strategy with the existing strategies has been 
illustrated through key performance indicators.  
 

Experimental Details 
The implementation of developed approach has 

been done through MATLAB via PC along with the 
Intel i3 core processor, Windows 10 operating system 
and 2GB RAM. The experimentation has been 
performed on Lytro Multi-focus Image Dataset.30 This 
database involves 20 color multi-focus image pairs. 
Each image size is of 520×520 pixels. This image 
dataset is available publically online. In addition, four 
triplets of the multi-focus images i.e. three source 
images of a single scene and total of four such series, 
are also the part of dataset. The performance values 
have been demonstrated through Tables 1 and 2 for 
MI, UQI, PSNR, SSIM, RMSE metrics. Graphical 
representation of the analysis has been demonstrated 
through Figs 1–3.  
 

Performance Evaluation Metrics 
The performance of developed Contourlet + Taylor 

ASSCA is performed to analyze various techniques 

with respect to metrics, Root Mean Square Error 
abbreviated as RMSE, universal quality index, in 
short UQI, Peak Signal to Noise Ratio, in short 
PSNR, and structural similarity index measure i.e. 
SSIM as well as mutual information i.e. MI.  

 

a) RMSE:  
It is defined to compute the fusion model  

error for predicting the quantitative data, and is given 
by, 
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ଵ

ଶ
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               … (25) 
where, the two input images are indicated as 

𝐺ሺ𝑚,𝑛ሻ, 𝐷ሺ𝑚,𝑛ሻ, and the fused image is represented 
as 𝑉ሺ𝑚,𝑛ሻ. Minimum value of RMSE denotes the 
better performance in context of a good image fusion 
technique. 

 
b) UQI: 

It is the metric that measures first and second order 
statistic of two images, and is expressed as, 

))((

4
2222

,

DGDG

DGDGU
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                … (26) 

where, G and D indicate the mean value of two 

images, while G as well as D are the variance of 

two images. UQI value closer to +1 denotes effective 
algorithm. 

 
c) PSNR: 

The definition for peak signal to noise ratio may be 
given as ratio between highest attainable signal power 
and power of affected noise where highest value  
for peak signal to noise ratio points towards better 
performing result and decibel (dB) is used to denote 
PSNR.  
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In Eq. 27 maxm  has been used for indicating 

maximum image pixel value while mean square error 
has been represented through MSE  
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d) SSIM Index: 
We may utilize this SSIM index as a key 

performing indicator for comparing two images. 
Highest value for SSIM index points towards better 
performing result. 
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 … (28) 
where,  , and  are notations used to depict 

pixels moreover  and  used to denote mean pixel 

value,  and   used to denote variance of pixels 

and   denotes the covariance of pixels, further 1  
and φ2 used to denote variables utilized for stabilization.  

 

e) MI: 
It is utilized to measure the quantity of the mutual 

dependence between the two images, moreover MI 
value is computed using the below expression.  
 

𝑀 ൌ  
1
2
ሾ𝑀ሾ𝐺ሺ𝑚,𝑛ሻ,𝑉ሺ𝑚,𝑛ሻሿ𝑀ሾ𝐷ሺ𝑚,𝑛ሻ,𝑉ሺ𝑚,𝑛ሻሿሿ 

 …(29) 
 

where, the two input images are indicated as 
Gሺm, nሻ, Dሺm, nሻ, and the fused image is represented 

Table 1 — Performance Analysis using db2, coif1, sym2 for fusion quality metrics RMSE, UQI, PSNR, SSIM, MI for image pair 1 (Bold 
font: best performance results) 

S. No. Three 
Transforms 

Metrics DWT+ UDWT 
+GA 

DWT+ DCNN DWT+ 
HWFusion +SP-Whale 

DWT+ ASSCA+ 
Renyi entropy 

Proposed 
Method 

1 db2 RMSE 8.826 7.650 8.827 7.650 3.687 

2 UQI 0.968 0.968 0.965 0.969 0.974 
3 PSNR(dB) 33.38 30.45 33.39 35.69 38.81 

4 SSIM 0.901 0.890 0.886 0.898 0.902 
5 MI 1.330 1.258 1.331 1.393 1.562 
1 coif1 RMSE 8.826 7.650 8.728 7.650 5.598 
2 UQI 0.973 0.971 0.973 0.976 0.979 
3 PSNR(dB) 33.38 31.91 33.05 40.62 42.08 
4 SSIM 0.886 0.914 0.920 0.923 0.929 
5 MI 1.334 1.294 1.322 1.492 1.651 
1 sym2 RMSE 8.827 7.650 9.142 7.650 6.276 
2 UQI 0.973 0.976 0.973 0.981 0.984 
3 PSNR(dB) 33.39 33.35 34.82 35.69 37.77 
4 SSIM 0.890 0.913 0.902 0.926 0.943 
5 MI 1.331 1.331 1.364 1.393 1.589 

 

Table 2 — Performance Analysis using db2, coif1, sym2 for fusion quality metrics RMSE, UQI, PSNR, SSIM, MI for image pair 5  
(Italic font: better performance results) 

S. No. Three 
transforms 

Metrics DWT+ UDWT 
+GA 

DWT +DCNN DWT+ HWFusion 
+SP-Whale 

DWT+ ASSCA 
+Renyi entropy 

Proposed 
Method 

1 db2 RMSE 43.97 43.75 44.02 43.75 42.53 
2 UQI 0.96 0.960 0.963 0.965 0.966 
3 PSNR(dB) 18.67 19.79 20.10 23.08 25.95 
4 SSIM 0.841 0.874 0.848 0.880 0.888 
5 MI 1.143 1.156 1.169 1.235 1.389 
1 coif1 RMSE 44.02 43.75 43.94 43.75 40.25 
2 UQI 0.967 0.963 0.964 0.971 0.973 
3 PSNR(dB) 19.79 19.79 18.20 23.20 26.81 
4 SSIM 0.869 0.845 0.857 0.889 0.896 
5 MI 1.162 1.156 1.134 1.230 1.372 
1 Sym2 RMSE 44.06 43.75 44.02 43.75 40.79 
2 UQI 0.962 0.960 0.996 0.974 0.979 
3 PSNR(dB) 20.35 19.79 19.78 20.66 22.95 
4 SSIM 0.845 0.841 0.846 0.856 0.913 
5 MI 1.174 1.156 1.162 1.180 1.356 
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as Vሺm, nሻ. Higher value of the MI denotes better 
performance. 

Experimental Results and Comparative Techniques 

The experimentation is performed on Lytro Multi-
focus Image Dataset for performing multi focus image 
fusion. The methods, like DWT + DCNN19, DWT + 
HWFusion + SP-Whale12, DWT + ASSCA + Renyi 
entropy31 as well as DWT + UDWT + GA32 are utilized 
for comparison with proposed Contourlet +Taylor 
ASSCA for the analysis. Parameter constants for 
proposed fusion model involved number of iterations 
= 10. The analysis is carried out based on Daubechies 
2 (db2), coiflets 1 (Coif1), and symlets 2 (Sym2). 

a) Analysis of Image Fusion With Respect to db2
The comparative analysis in terms of metrics for

image fusion relied on db2 is portrayed in Fig 1. 
Analysis using RMSE metric, UQI metric, PSNR 
metric, SSIM metric and MI metric respectively with 
different images are shown in Fig 1a), Fig 1b), Fig 
1c), Fig 1d), Fig 1e).

b) Analysis of Image Fusion In Terms of Coif1
The analysis of methods in terms of metrics for

image fusion based on Coif1 is depicted in Fig. 2 
where Fig 2a), Fig 2b), Fig 2c), Fig 2d), Fig 2e) 
illustrates analysis using, RMSE metric, UQI metric, 
PSNR metric, SSIM metric, MI metric respectively 
with different images. 

Fig. 1 — Analysis of methods based on db2 contourlet transform a) RMSE b) UQI, c) PSNR,  d) SSIM, and e)MI 
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c) Analysis of The Image Fusion Based on Sym2
The comparative analysis based on sym2 for

image fusion is displayed in Fig. 3 where Fig. 3a), 
Fig. 3b), Fig. 3c), Fig. 3d), Fig. 3e) portrays the 
analysis using RMSE metric, UQI metric, PSNR 
metric, , SSIM metric, MI metric with different 
images respectively. 

Comparative Discussion 
We have demonstrated different performance 

metrics (MI, PSNR, RMSE, UQI, SSIM) through 
Table 1, Table 2 as well as via Fig. 1, Fig. 2, 
Fig. 3 comparative analysis comparison with existing 
algorithms to proposed method using db2, coif1 and 

sym2 respectively. The maximal MI yielded through 
the developed Contourlet + Taylor ASSCA with 
the value of 1.651, using coif1. The maximal 
PSNR computed by proposed Contourlet + Taylor 
ASSCA with a value of 42.08dB based on coif1. 
In addition, the maximal UQI computed by 
proposed Contourlet + Taylor ASSCA with a value  

of 0.984, based on sym2. The minimal 
RMSE computed by proposed Contourlet + Taylor 
ASSCA with a value of 3.687, based on db2. 
The maximal SSIM computed by proposed Contourlet 
+ Taylor ASSCA with a value of 0.943 based
on sym2.

Fig. 2 — Analysis of methods based on Coif1 contourlet transform a) RMSE b)UQI , c)PSNR, d) SSIM, and e)MI 
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Conclusions and Future Scope 
This paper incorporates the proposed HoEnTOA  

to combine/fuse multi-focus images. Moreover, 
contourlet transform is introduced for converting two 
input images further generating four frequency  
sub-band coefficients, such as LH, LL, HH as well as 
HL. Once the sub-band is made, proposed Taylor 
ASSCA and the holoentropy are employed for fusing 
weighted function in order to fuse the images. Here, 
the Taylor ASSCA is designed newly by 
incorporating ASSCA with Taylor series. Once the 
fusion is done, the inverse contourlet transform is 
executed to gain final fused image. Here, the fusion is 

done with respect to maximal fitness function.  
Thus, proposed HoEnTOA performs the image  
fusion effectively. The experimentation is carried  
out based on Lytro Multi-focus color image dataset. 
The devised image fusion scheme has demonstrated 
the better performance via the metrics MI, PSNR, 
RMSE, UQI, and SSIM. The effectiveness of 
proposed model is computed which revealed maximal 
MI of 1.651, maximal PSNR of 42.08 dB, maximal 
UQI of 0.984, maximal SSIM of 0.943, and minimal 
RMSE of 3.687, respectively. In future, Bayesian 
theory may be further incorporated to the proposed 
model. 

 
 

Fig. 3 — Analysis of methods based on sym2 contourlet transform a) RMSE b) UQI, c) PSNR, d) SSIM, e) MI 
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