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The forecasting of short term electricity load plays a vital role in power system. It is essential for the power system's 
reliable, secure, and cost-effective functioning. This paper contributes significantly for enhancing the accuracy of short term 
electricity load forecasting. It presents a hybrid forecasting model called Gated Recurrent Unit with Ensemble Empirical 
Mode Decomposition and Boruta feature selection (EBGRU). It is a hybrid model that addresses the non-stationary, 
non-linearity and noisy issues of the time series input by using Ensemble Empirical Mode Decomposition (EEMD). It also 
addresses overfitting and curse of dimensionality issues of load forecasting by identifying the pertinent features using Boruta 
wrapper feature selection. It effectively handles the uncertainty and temporal dependency characteristics of load and forecasts 
the future load using deep learning based Gated Recurrent Unit (GRU). The proposed EBGRU model is experimented by using 
European and Australian Electricity load datasets. The temperature has high correlation with load demand. In this study, both 
load and temperature features are considered for the accurate short term load forecasting. The experimental outcome 
demonstrates that the proposed EBGRU model outperforms other deep learning models such as RNN, LSTM, GRU, RNN with 
EEMD and Boruta (EBRNN) and LSTM with EEMD and Boruta (EBLSTM). 

Keywords: Boruta feature selection, Electricity load prediction, Ensemble empirical mode decomposition, Gated recurrent 
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Introduction 
The electric power industry is the important 

industry contributing rigorously in the development of 
states. The short term load forecasting (STLF) is 
indispensable for directing the day to day activities of 
the society and industries. It assists the power system 
in making decisions regarding power generation 
planning, fuel purchase scheduling, resource 
allocation, maintenance schedule, and preparation of 
the electricity load dispatch schedule. The power 
system cannot generate large quantity of electricity in 
advance and store it for future use. The cost of storing 
the electricity is more compared to the cost of 
generating the electricity. So, it is necessary for the 
power system to forecast the future load demand in 
advance.1 The power system can make the resources 
to be available for generating the electricity on 
demand economically without storing it. STLF is also 
very useful for the energy policy makers and power 
system managers for making proper decision. The 

high quality, uninterrupted and stable electric energy 
provided by the power system relies on the accurate 
STLF.2 

As load demand depends on different unstable 
factors like meteorological conditions and electricity 
price, it adds volatile, non-linearity and non-stationary 
characteristics to the load.3,4 The accurate forecasting 
becomes the challenging task in power systems. The 
development of an efficient forecasting model is 
essential to overcome these challenges. Many 
researchers have devised numerous approaches to 
increase the accuracy of short term load forecasting 
over the last few decades. They are divided into two 
categories: traditional and intelligent methods. The 
traditional methods like ARIMA,5 Kalman filtering6, 
regression analysis7, and exponential smoothing8 are 
not a satisfactory methods for STLF due to an 
inability of handling the non-linear and multivariate 
data. The intelligent methods such as artificial neural 
network, support vector regression, expert system, 
random forest, and fuzzy logic have the ability to 
handle the non-linear and multivariate inputs, 
however they cannot guarantee the accurate 
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forecasting in all types of problems.9 The performance 
of these models are affected due to the volatile nature, 
the increase of the volume of data, the number of 
layers, and the long term dependencies among the 
data.10,11 The neural network suffers from the slow 
convergence and also the local minimum issues. In 
order to overcome these issues and improve the 
performance of forecasting, the combination of 
various methods can be used.1,12 
 

This paper introduces the EBGRU hybrid model as 
a combination of three methods namely, feature 
selection, decomposition and deep neural network. 
The load data has a strong non-linear nature and it 
consists of noisy data. The decomposition methods 
can handle these non-linear and noisy issues by 
decomposing the time series load and temperature 
inputs into smaller components. Feature selection is 
an important dimensionality reduction technique that 
selects useful characteristics from the input to 
decrease the curse of dimensionality. It is usually 
done in filter or wrapper feature selection. The 
relevancy of the features is chosen in filter feature 
selection based on their statistical dependence on the 
target feature. The wrapper feature selection evaluates 
every possible combination of features from the 
original list and chooses the best subset depending on 
the learning model. Hence it is called as model based 
feature selection. It guarantees an accurate result than 
the filter feature selection. 
 

The deep learning is the complex artificial neural 
network that has an ability to find the sequence 
dependency from the time series data. The uncertainty 
and the non-linearity issues are effectively handled by 
the deep neural network. The real time load is the 
complex and time series in nature. So, the deep learning 
based gated recurrent unit is utilized in this paper for 
short term load forecasting. The proposed EBGRU 
model supports well the current working environment 
by enhancing the accuracy of the short term load 
forecasting at a great extent. It is useful for the reliable 
and an economic functioning of the power sectors, 
power utilities companies, power manufacturers and 
society. EBGRU helps power sector in making decisions 
on operational planning and regional energy exchange. It 
helps electricity power utility companies in making 
decisions related to schedule, generate, integrate, control 
and dispatch of an electricity. It also helps the electricity 
power manufacturers in making decisions related to load 
increment/decrement, preparing maintenance schedule 
and planning energy storage optimizations. Most 

importantly, it protects the society from the shortage of 
electricity and helps to continue the regular schedules 
smoothly. 
 

Yu et al.10 designed a hybrid model for improving the 
performance of STLF using ensemble empirical mode 
decomposition. The random volatility behavior of the 
load series was effectively handled by employing 
denoising technique. The author utilized the 
decomposition for denoising purpose. The decomposed 
subseries are modeled using back propagation neural 
network (BPNN). Finally, the forecasting outcome from 
each subseries was combined and formed the final 
forecast result. The BPNN with EEMD model improved 
the accuracy of load forecasting. Zheng et al.12 
developed a STLF model in which the selection of 
similar day (SD) was done using XGBoost and k-means 
clustering. Then, the time series load is decomposed into 
sub time series for reducing the unnecessary interactions 
in the load series. The long term dependencies are 
effectively dealt with LSTM and the load was 
forecasted. The result showed that, the LSTM model 
with similar day selection and EMD combination 
achieved better forecasting performance than LSTM 
with SD, Auto Regressive Integrated Moving Average 
(ARIMA) with SD, LSTM with EMD and Support 
Vector Regression (SVR) with SD. 
 

Gao et al.1 developed a hybrid load forecasting 
model. The model forecasted the short term electricity 
load using GRU along with empirical mode 
decomposition and the Pearson correlation coefficient 
feature selection. The decomposition and feature 
selection concepts were utilized for improving the 
performance of GRU. The performance of this model is 
experimented using three different datasets and 
compared against random forest, random forest with 
EMD, SVR and SVR with EMD. The GRU with EMD 
proved an improved performance than others. Qiu et al.4 

introduced an efficient load demand forecasting model. 
The author utilized the Deep Belief Network (DBN) for 
forecasting load demand. The extracted Intrinsic Mode 
Functions (IMF) from decomposition process was 
modeled by using EMD and DBN with two Restricted 
Boltzmann Machine (RBM). As a result, DBN with 
EMD achieved better results. 
 

In load demand forecasting, the EMD technique has 
been widely utilized for denoising purpose. Each sub-
series comprise a portion of the actual load demand 
series. It makes the sub series to become considerably 
simpler than the original series and allows it for accurate 
forecasting. Fan et al.13 developed the hybridized 
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model for electricity load forecasting using SVR with 
differential EMD. The model guaranteed the better 
interpretability and good accuracy of forecasting. In 
order to estimate the electricity load demand for a 
certain date and season, Bedi and Toshniwal14 merged 
the EMD approach with the LSTM model. It results 
better performance than the single model. As stated 
above, the decomposition algorithm and prediction 
model of the hybridized are primarily different. 
However the establishment procedure is nearly identical. 

For short term load forecasting, many studies used 
hybrid models. The methods discussed in literature 
performed the decomposition on the univariate load 
data and also performed the forecasting directly from 
the decomposed components. It may add complexity, 
introduce random errors and also increases the 
workload.15 Using ensemble empirical mode 
decomposition, the EBGRU model efficiently addresses 
the noise, non-linearity, and non-stationary aspects of 
the load data in current study. The temperature has high 
correlation with the electricity load. So, in addition to 
load, the temperature data also considered for 
improving the performance of STLF. 

As the size of the input grows larger, so does the 
complexity of the forecasting model. The dimension of 
the input should be reduced for reducing the 
forecasting model complexity. The feature selection is 
one of the solutions for reducing the dimension of input 
data. The learning algorithm for obtaining the optimal 
subset of features is taken into account by the wrapper 
feature selection. It aids in projecting performance 
improvement. In this paper, the curse of dimensionality 
is reduced by reducing the dimensionality of the 
decomposed component using the Boruta wrapper 
feature selection. Subsequently, the temporal 
dependency and uncertainty of the time series load is 
efficiently analyzed and the over fitting is reduced by 
using the deep learning based gated recurrent unit. In 
earlier research, the forecasting models were 
constructed for each sub series directly. But, in this 
paper the feature selection is applied on each 
decomposed sub series to find the significantly 
correlated features. Consequently, the GRU forecasting 
model was constructed using that selected features to 
enhance the forecasting performance. The main 
contribution of the paper is as follows, 
 

 Multivariate Input: The load data is more sensitive 
to the temperature. So, the history of load and 
temperature data is considered as the input features 
for improving STLF. The previous  

24 hours load and temperature features are utilized 
as input for forecasting the next hour load. 

 Decomposition: The multivariate input features are 
decomposed into different load and temperature 
components (IMFs and Residue) using EEMD. 

 Feature Selection: The dimension of each IMFs 
and residue is reduced by using the Boruta wrapper 
feature selection. 

 Deep Learning: The selected features from each 
IMFs and residue are given as input to deep 
recurrent neural network based GRU network for 
forecasting. The final load forecast result is 
constructed by combining the forecast outcome 
from each IMFs and residue. 

 Performance Evaluation: The performance of the 
proposed EBGRU model is compared against 
RNN, LSTM, GRU, EBRNN and EBLSTM in 
terms of RMSE, MAE and MAPE. 

 

The nomenclature used in this paper is given in 
Table 1. 

The rest of the paper is organized as follows. The 
significance of EEMD and Boruta feature selection are 
presented in the following section. In the next section, 
the deep learning based RNN, LSTM, and GRU models 
are discussed. Followed by, the architecture and algorithm 
of the proposed EBGRU model is enlightened. The 
experimental findings of EBGRU are evaluated in terms 

Table 1 — Nomenclature 

AEMO Australian energy market operator 

ANN Artificial Neural Network 
AR Auto regression 
ARIMA Auto regressive integrated moving average 
AU AEMO dataset (Site1) 
DBM Deep belief network 
DWT Discrete wavelet transform 
EBGRU Gated recurrent unit with EEMD and boruta 
EBLSTM Long short term memory with EEMD and boruta 
EBRNN Recurrent neural network with EEMD and boruta 
EEMD Ensemble empirical mode decomposition 
EMD Empirical mode decomposition 
FT Fourier transform 
GRU Gated recurrent unit 
IMF Intrinsic mode decomposition 
LSTM Long short term memory 
MAE Mean absolute error 
MAPE Mean absolute percentage error 
RBM Restricted Boltzmann machine 
RMSE Root mean square error 
RNN Recurrent neural network 
SD Similar day selection 
STLF Short term load forecasting 
SVR Support vector regression 
SW Switzerland dataset 
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of error measures in the next section. Finally, the present 
study ends with conclusions. 
 

Ensemble Empirical Mode Decomposition and Feature Selection 
The electricity load demand is non-linear, noisy and 

time series in nature. The accurate STLF can be 
achieved by effectively handling these characteristics. 
Many researchers made a deep analysis and designed the 
models with the combination of signal decomposition 
technique as an important pre-processing method to 
enhance the performance of STLF.16 The Fourier 
Transform (FT) was utilized for pre-processing the non-
linear data. It concentrates the frequency resolution but 
fails to consider the time stamp.14,17 The Discrete 
Wavelet Transform (DWT) has been utilized as an 
alternate to FT for STLF. It considers the frequency 
components along with the time stamp. But, it has the 
critical decimation issues. Next, the self-adaptive 
Empirical Mode Decomposition (EMD) was introduced 
for transforming the high frequency components in the 
load series into low frequency components based on the 
local characteristics of the data instead of using the basis 
function as other decomposition methods. However, 
there is a presence of different frequencies in a single 
IMF. As a result, EMD has a mode mixing issue. Hence, 
the random volatility nature of the load data introduces 
the noise.6,18 The traditional EMD is not sufficient for 
obtaining the accurate STLF. The denoising process 
should be incorporated with EMD to solve the mode 
mixing problem.16,19 The method called EEMD has the 
noise assisted data analysis capacity that can be utilized 
for improving the short term load forecasting. 
 

Ensemble Empirical Mode Decomposition (EEMD) 
Wu and Hung et al.20 presented the EEMD as a 

self-adaptive signal decomposition approach. It 
decomposes any series into a number of IMFs and 
residue. The conditions to be satisfied by each IMF 
are as follows. First, the difference between the 
number of zero crossings and the number of extrema 
must be zero or one. Second, at every moment in 
time, the mean value of the envelope defined by local 
minima and the envelope formed by local maxima is 
zero.21,22 Let us consider the original signal x(t). To 
tackle the mode mixing problem in EEMD, white 
noise is mixed with original signal across the entire 
time-frequency space. As shown below, the original 
time series signal is decomposed into a number of 
IMFs and residue. 

𝑥ሺ𝑡ሻ ൌ෍𝑐௝ሺ𝑡ሻ ൅ 𝑟ሺ𝑡ሻ
௡

௝ୀଵ

                                           … ሺ1ሻ 

where, r(t) denotes the residue and cj(t) denotes IMF. 
Due to signal intermittence, the single IMF may have 
disparate frequencies. It leads to the mode mixing 
problem. This problem can be handled well by 
introducing the EEMD. To tackle the mode mixing 
problem in EEMD, white noise is mixed with the 
original signal across the entire time-frequency space.23 
The following is the EEMD's working procedure. 

First, the random noise signal is added to the 
original signal. After that, the decomposition is 
performed to form the IMFs and residue. Repeat the 
steps by adding the random white noises at each 
iteration. Then, find the iteration that generates the 
minimum number of IMFs. Finally, compute the final 
decomposition result by taking the ensemble mean of 
IMFs.18 The original signal is decomposed by using 
EEMD as follows, 
 

𝑥ሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ ൅ 𝑛௣ሺ𝑡ሻ                                                 … ሺ2ሻ 
 

𝑥௣ሺ𝑡ሻ ൌ ෍ 𝑐௝,௣ሺ𝑡ሻ ൅ 𝑟௡೛

ே೛

௣ୀଵ

ሺ𝑡ሻ                                  … ሺ3ሻ 

 

where, np(t) denotes the white noise added at the pth 

trail, x(t) denotes input signal, xp(t) denotes the input 
signal with added noise at the pth iteration, ci,p denotes 
the jth IMF of the pth iteration and 𝑟௡೛ denotes the 

residue at the pth iteration. The ensemble mean of the 
IMFs is calculated as follows, 
 

𝑐௝ ൌ ቌ෍𝑐௝,௣

ே

௣ୀଵ

ቍ 𝑁൘                                                   … ሺ4ሻ 

 

where, ‘N’ denotes the number of iteration. 
 

Boruta Feature Selection 
Feature selection is a key strategy for reducing 

dimensionality. It reduces the dimension of the 
dataset by identifying the relevant features. There are 
two types of feature selection namely, filter method 
and wrapper method. The filter method works faster 
as compared to wrapper method. It uses the statistical 
characteristics of the features as feature evaluator. It 
assigns a numerical value to each feature based on the 
statistical characteristics like correlation between it 
and the target feature. So, the feature with least 
important are identified as irrelevant and are removed 
from the input features list. On the other hand, the 
learning algorithm is utilized for identifying the best 
subset of features in wrapper feature selection.24 It 
checks all the possible combination of features to find 
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the optimal features. It reduces over fitting and curse of 
dimensionality issues by identifying an optimal subset 
of features.25 The process of finding all the strongly 
relevant and all the weakly relevant features is not an 
easy task.26 The wrapper feature selection provides the 
solution for all relevant problems. The Boruta feature 
selection is used in this paper to locate all of the 
important features for increasing STLF performance. 

The Boruta feature selection is the model-based 
(wrapper) feature selection. It is an enhanced version of 
the random forest regression.27 It provides the best 
solution for finding the all relevant problems. The 
random correlations are formed by the random 
fluctuation in time series data and the fixed size of 
samples while using random forest regression. Hence, 
this issue increases with the decreasing size of data. So, 
the Boruta feature selection creates the random features 
by performing the permutations of the samples for each 
feature and adds it with original dataset. Then, it finds 
the importance of both original and random features. 
After that, it selects the features that have the relevance 
(z-score) more than the maximal relevance of its random 
features as important features. It repeats these processes 
until all features are selected or rejected. 
 

Deep Learning Models 
The deep neural network is the complex ANN that 

has an ability to overcome the limitations of artificial 
neural network by handling the data of any size and any 
number of layers easily. It analyses the input by stacking 
numerous hidden layers between the input and output 
layers. The DNN has the capability to analyze the 
temporal dependency in the input complex time series 
data and keep those information for future process. It 
works well with time series data and successfully 
uncovers hidden temporal patterns. As the load demand 
has time series nature, the deep neural network is 
suitable for processing and forecasting the load. The 
deep learning methods have been utilized in variety of 
applications such as load forecasting, heart disease 
prediction, wind speed prediction, toxicity prediction 
and crop yield prediction. It is also suitable for 
processing big datasets with high dimensions.11 The 
deep learning methods like GRU, LSTM and RNN have 
the capability of handling the temporal dependency. So, 
they are suitable for analyzing the time series load data. 
The discussion about these methods is given in the 
following section. 
 

Recurrent Neural Network 
A recurrent neural network is a type of ANN with a 

recurrence connection in its network topology. It 

captures the sequential information from the input and 
shares it with different time steps by looping back to 
itself. So, it is well suited to the time series forecasting. 
The parameter sharing capability leads to the reduction 
of computational time. Despite the fact that it enhances 
forecasting accuracy, it has two significant flaws: 
vanishing and exploding gradient problems. Hence, it 
can remember the past information for a shorter period 
only.28 
 

Long Short Term Memory 
A more advanced version of the RNN is the LSTM. It 

overcomes the gradient descent and short term memory 
issues of RNN by introducing memory in each cell. 
Each memory consists of three different gates namely, 
input, forgot and output gates.29 It tunes the information 
flow through the network by employing the gates. The 
input gate finds the new information from the current 
input and makes use of it for updating the current cell 
state. The required information is taken from the cell 
state by the output gate and adds it to the output. The 
forget gate discards the unwanted information that 
cannot be reused. In each cell, it retains the required 
information and discards the unwanted information from 
the past computation. It remembers the long sequences 
of temporal dependency information in the cell itself and 
utilizes it for further computation.11 In recent years, 
many researchers utilized LSTM for time series 
forecasting and attained better results. 
 

Gated Recurrent Unit 
The GRU is an extended version of the LSTM that 

addresses the vanishing and exploding gradient 
problems of RNN. It can also successfully learn the 
long-term dependencies that occur in time series 
data.30 It is similar to LSTM but, it has fewer 
parameters than the LSTM. Hence, it produces better 
results than the LSTM for the same problem.31 The 
GRU utilizes only the reset and update gates for 
regulating the information flow through the neural 
network.28 The architecture of gated recurrent unit is 
depicted in Fig.1. 

The update gate decides what information from the 
past needs to keep in the network and what 
information the network should forget. The update 
gate feeds the sigmoid function, the previous 
concealed state information as well as the current 
input. It finds update state at time‘t’ as follows, 
 

𝑢௧ ൌ 𝜎ሺ𝑊௨𝑥௧ ൅𝑊௨ℎ௧ିଵ ൅ 𝑏௨ሻ                               … ሺ5ሻ 
 

where, ‘ut’ represents update state at time ‘t’ and ‘xt’ 
represents the current input. The ‘ht−1’ denotes the 
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hidden state information at the time period ‘t−1’. The 
‘Wu ‘represents the weight matrix of the update gate 
and ‘bu‘denotes the bias weight matrix of the update 
gate during sigmoid function. 

The update gate forgets the previous state information 
when the outcome of the sigmoid function is closer to 1. 
It remembers the previous hidden state information 
when the outcome is 0. The reset gate also utilizes the 
sigmoid function for resetting the hidden state. It feeds 
the current state and previous hidden state information 
as input to the sigmoid function and finds whether the 
current state have any new information for resetting or it 
has only the previous information for resetting.32,33 
When the reset gate produces the value closer to 0, it 
throws away the previous state information and when 
the value is closer to 1, it resets the state by the new 
information as follows, 

𝑟௧ ൌ 𝜎ሺ𝑊௥𝑥௧ ൅𝑊௥ℎ௧ିଵ ൅ 𝑏௥ሻ    … ሺ6ሻ 

The hidden state, ht, is updated as follows, 

ℎ͂௧ ൌ 𝑡𝑎𝑛ℎሺ𝑊. ሾ𝑟௧ ∗ ℎ௧ିଵሿ ൅𝑊. 𝑥௧ሻ            … ሺ7ሻ 

ℎ௧ ൌ ሺ1 െ 𝑢௧ሻ ∗ ℎ௧ିଵ ൅ 𝑢௧ ∗ ℎ͂௧           … ሺ8ሻ 

where, ℎ͂௧ denotes candidate memory cell. 

Proposed Model 
 

EBGRU Architecture 
The proposed deep learning based EBGRU model 

is a hybrid model. The architecture of EBGRU 
consists of four phases namely decomposition, feature 
selection, deep learning and performance evaluation. 
The EBGRU model's architecture is depicted in 
Fig. 2. In first phase, decomposition phase, the load 
(L) and temperature (T) series are decomposed
sequentially into a number of subseries by using
EEMD. However, the non-stationary and non-linearity
nature of load and temperature adds complexity to the
forecasting process, it cannot be ignored while
performing the load forecasting. The divide and
conquer technique of EEMD guarantees the reduction
of model complexity by dividing the input time series
into a number of sub time-series. It also removes high-
frequency components from other frequency modules
and makes it possible to minimize the impact of
measurement noise. In the second phase, feature

Fig. 1 — Architecture of Gated Recurrent Unit 

Fig. 2 — Architecture of EBGRU model 
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selection phase, the dimension of the input for the 
forecasting process is reduced by finding relevant 
features using accurate wrapper. Using Boruta the ideal 
subset of features is selected from load and temperature 
data of each IMF and residue. 

In third phase, deep learning phase, the selected 
features are given as input to GRU for forecasting. 
Gated recurrent unit is slightly less complex, faster and 
consumes less memory than LSTM. It controls the 
flow of information without requiring the use of a 
memory unit. In fourth phase, performance evaluation 
phase, the dataset with previous day 24 hours load and 
temperature is considered as the input and the next 
hour load is predicted as an output. In terms of root 
mean square error (RMSE), mean absolute percentage 
error (MAPE), and mean absolute error (MAE), the 
proposed EBGRU model is compared against RNN, 
LSTM, GRU, EBRNN, and EBLSTM. 

EBGRU Algorithm 
The proposed EBGRU model's functioning 

procedure is as follows. The EBGRU model cleans the 
input load (L) and temperature (T) time series by 
removing the incompleteness. It replaces the missing 
values using the mean value of the features. Then, it 
transforms the load and temperature to the new range 
(0 to 1) by normalizing it by using the min-max 
normalization. Consequently, it performs the 
decomposition, feature selection, forecasting and 
performance evaluation. First, it decomposes the input 
series using ensemble empirical mode decomposition. 
Prior to decomposition, it adds the white noise to the 
original signal and generates the noise added original 
time series for the input time series as given in Eq. (2). 
After that it decomposes the noise added original signal 
into the series of IMFs and residue as given in Eq. (3). 
It repeats the decomposition process for ‘K’ number of 
trials and ‘A’ number of features where A = 1, 2, 3, …, 
49. After that it combines the corresponding IMFs and
residue of the related features and forms the final IMFs
and residue. Subsequently, it identifies the optimal
subset of features by using Boruta feature selection for
improving the forecasting performance. It creates the
random features by permuting the original features.
Then, it adds the random features to the original
features and builds the random forest regression using
the extended dataset. Next, it selects the original
features as the relevant features if its z-score is higher
than the maximum z-score of its random features.
EBGRU repeats the process of finding optimal subset
of features for each IMFs and residue. Consequently, it

forecasts the load for each IMFs and residue using 
gated recurrent unit (GRU). Then, it combines the 
forecast output of each IMFs and residue to construct 
the final load forecast output. Finally, it tests the 
performance of EBGRU against RNN, LSTM, GRU, 
EBRNN and EBLSTM in terms of error measures. It 
tests the generality of the proposed EBGRU forecasting 
model by using two different datasets of hourly load 
and temperature data collected from AEMO and 
European country Switzerland. 

Results and Discussion 
Dataset 

The experiment is conducted using the load and 
temperature data recorded at an hourly basis from the 
European and Australian countries. The Switzerland 
(SW) load and temperature from January 2008 to 
February 2012 and AEMO (AU) load and temperature 
from January 2004 to February 2005 are used for 
forecasting. The data from 1st January 2008 to 31st 
December 2010 is utilized as the training dataset, the 
data from 1st January 2011 to 31st December 2011 is 
used as the validation dataset, and the data from 1st 

January 2012 to 31st February 2012 is used as the 
testing dataset for the SW dataset. The data from 1st 

January 2004 to 31st December 2004 is used as the 
training dataset, 1st January 2005 to 31st January 2005 
is utilized as validation dataset, and 1st February 2005 
to 28th February 2005 is used as the testing dataset for 
the AU dataset. 

Performance Evaluation 
To show the superiority of the proposed EBGRU 

model, the performance is evaluated by using RMSE, 
MAE and MAPE. Let ‘Actualt‘ and ‘Forecastt‘ be the 
actual and forecast load for the period ‘t’. Let ‘N’ be 
the number of samples.34,35 The RMSE, MAPE and 
MAE of the forecasted load are determined as follows, 

RMSE ൌ ඩ
1
𝑁
෍ሺ𝐴𝑐𝑡𝑢𝑎𝑙୲ െ Forecast୲ሻଶ
ே

୲ୀଵ

   … ሺ9ሻ 

MAPE ൌ
ଵ

ே
∑ ቚቀ஺௖௧௨௔௟೟ିி௢௥௘௖௔௦௧೟

஺௖௧௨௔௟೟
ቁ ∗ 100ቚே

௧ୀଵ      … (10) 

MAE ൌ
1
𝑁
෍|𝐴𝑐𝑡𝑢𝑎𝑙௧ െ 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡௧|
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Case Study – I: Results obtained from SW dataset 
The results of the experiment conducted using SW 

dataset are as follows. The previous day load data has 



J SCI IND RES VOL 81 MAY 2022 512

strong positive correlation and previous day 
meteorological temperature data has strong negative 
correlation with the current load. So, the previous day 
load and temperature series for the 24 hours load and 
temperature are taken as input and it is decomposed 
into 6 IMFs and residue. Then, the IMFs of the 
previous day load and temperature for 24 hours is 
formed by combining the corresponding hour IMFs 
and residue. After that, the Boruta feature selection is 
applied at each IMFs and residue to select the relevant 
features from the previous day 24 hours load and 
temperature features related to the next hour load. The 
features extracted are Lt−24, Lt−23, Lt−20, Lt−22, Lt−1, Lt−2, 
Lt−19, Tt−13, Lt−21, Lt−4, Tt−5. Then, these features are 
given as input to the GRU for forecasting. 

GRU is designed as network with three hidden 
layers of 20 units in each. The number of epochs tested 
varies between 10 and 200. Finally, the number of 
epochs is set to 140. The training, validation and 

testing are performed by using the training, validation 
and testing datasets respectively. The validation is 
performed by setting MAE as the loss function and 
Adam as the optimizer. The load requirement is high 
during the high winter season (January and February) 
in Switzerland. So, the winter season load demand is 
forecasted. The comparison of the training and testing 
losses for SW dataset is shown in Fig. 3. The 
comparison of forecast load generated by using RNN, 
LSTM, GRU, EBRNN, EBLSTM and EBGRU against 
actual load for SW dataset is shown in Fig. 4 and Fig. 5. 

The training and testing loss shown in Fig. 3 depicts 
the improvement of the EBRNN, EBLSTM and 
EBGRU performance in each iteration. The testing loss 
reduces gradually as the number of iteration increases. 
The loss started to flat from 20 iterations. Hence, the 
overfitting of the EBGRU is reduced by reducing the 
testing loss. So, the EBGRU is designed by setting the 
number of epochs as 140. The forecasted load of 

Fig. 3 — Comparison of training and testing losses for SW dataset: (a1) RNN (a2) EBRNN (b1) LSTM (b2) EBLSTM (c1) GRU (c2) EBGRU 
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EBRNN, EBLSTM and EBGRU is almost as similar as 
the actual load. It is shown in Fig. 4. However, the 
EBGRU forecast load is almost closer to the actual load 
compared to EBRNN and EBLSTM. The sample of the 
EBGRU forecast load with actual and other models is 
shown in Fig. 5. The forecasting with EEMD 

decomposition and Boruta feature selection produces 
less error compared to forecasting without EEMD and 
Boruta feature selection as shown in Fig. 4 and Fig. 5. In 
addition to that, the proposed GRU with EEMD and 
Boruta feature selection shows the superiority by 
producing more accurate forecasting results compared to 
RNN, EBRNN, LSTM, EBLSTM and GRU. 
 

The forecasting outcomes for the SW dataset are 
compared using the performance indicators such as 
RMSE, MAPE, and MAE in Table 2. The EBRNN, 

Table 2 — Comparison of load forecasting results of SW 

Deep learning methodologies RMSE MAE MAPE 

RNN 209.684 160.068 2.512
LSTM 184.141 149.595 2.356
GRU 173.694 141.753 2.220
EBRNN 170.504 130.182 2.002
EBLSTM 160.815 125.417 1.977
EBGRU 154.901 120.784 1.895

Fig. 4 — Comparison of actual and forecast load for SW dataset: (a1) RNN (a2) EBRNN (b1) LSTM (b2) EBLSTM (c1) GRU (c2) EBGRU 

Fig. 5 — Sample of actual and forecast load: SW dataset 
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EBLSTM and EBGRU produces less RMSE of 39.18, 
23.326 and 18.793, MAE of 29.886, 24.178 and 20.969, 
MAPE of 0.51, 0.379 and 0.325 compared to RNN, 
LSTM and GRU respectively. Hence, among all the 
EBGRU achieves better forecasting results by producing 
less RMSE of 15.603, MAE of 9.398 and MAPE of 0.107 
with EBRNN. It is also producing less RMSE of 5.914, 
MAE of 4.633 and MAPE of 0.082 with EBLSTM. 
 

Case Study – II : Results Obtained from AU Dataset 
AEMO load and temperature data are also used to test 

the proposed model. It consists of daily load and 
temperature data recorded at every hour at AEMO. The 
previous day 24 hours load and temperature are more 
congruous with the next hour load. The input load and 
temperature series is decomposed into IMFs and residue 
using EEMD. The decomposition on AU dataset creates 
6 IMFs and one residue for each feature. Then, all the 
corresponding IMFs and the residue of the related 

features are combined together to form the final 6 IMFs 
and residue. The Boruta wrapper is then used to extract 
all relevant features from the IMFs and residue. It selects 
the Lt−24, Lt−2, Lt−5, Lt−1, Tt−1, Lt−14, Lt−23, Lt−3, Lt−4, Lt−15, 
Lt−7, Lt−16, Lt−12 features as relevant subset of features to 
the load at time ‘t’. Then, the selected features are given 
as input to the GRU. The gated recurrent unit is 
constructed as follows. 
 

The number of hidden layers in the GRU network 
is set to three with each layer has a total of 20 units. 
The number of epochs is set as 1200 epochs, the loss 
function as MAE and the optimizer as Adam. The 
GRU network is trained and validated by using the 
training and validation datasets. The load demand is 
high in the summer at the AEMO. So, the load for the 
summer (February) is forecasted by using the GRU. 
The comparison of the training loss and the testing loss 
during validation of AU dataset is shown in Fig. 6. The 

 
 

Fig. 6 — Comparison of training and testing losses for AU dataset: (a1) RNN (a2) EBRNN (b1) LSTM (b2) EBLSTM (c1) GRU (c2) EBGRU 
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comparison of actual and forecast load predicted by 
RNN, LSTM, GRU, EBRNN, EBLSTM, and EBGRU 
are shown in Figs 7 & 8. 

The significant reduction of loss in each iteration is 
shown in Fig. 6. The loss reduces with increasing 
number of iterations. The loss reduces gradually from 
200th iteration and maintains the lowest value at the 
iteration 1200. So, the EBGRU is designed by setting 
the number of iterations as 1200. The forecast load of 
EBRNN, EBLSTM and EBGRU is almost closer to 
the actual load. The graph in Fig. 7 demonstrates this. 
Hence, compared to EBRNN and EBLSTM, the 
forecast load of EBGRU is more similar to the actual 
load. The sample of the comparison of forecast load 
generated by EBRNN, EBLSTM and EBGRU against 
the actual load is shown in Fig. 8. The load forecasted 

by the RNN, LSTM, GRU with EEMD-Boruta feature 
selection produces better results than the RNN, 
LSTM, GRU without EEMD-Boruta feature selection. 
It is shown in Fig. 7 and Fig. 8. Hence, the proposed 
EBGRU outperforms other models. The performance 

 
 

Fig. 7 — Comparison of actual and forecast load for AU dataset: (a1) RNN (a2) EBRNN (b1) LSTM (b2) EBLSTM (c1) GRU (c2)
EBGRU 
 

 
Fig. 8 — Sample of actual and forecast load of AU dataset 
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comparison of load forecast results obtained by using 
RNN, LSTM, GRU, EBRNN, EBLSTM and EBGRU 
is given in Table 3. 
 

EBRNN, EBLSTM and EBGRU produces less 
RMSE of 0.055, 0.025 and 0.01, MAE of 0.093, 0,075 
and 0.067, MAPE of 0.556, 0.456 and 0.414 
compared to RNN, LSTM and GRU respectively. 
Hence, among all the EBGRU achieves better 
forecasting results by producing less MAPE of 0.878, 
0.489, 0.414, 0.32 and 0.033 compared to RNN, 
LSTM, GRU, EBRNN and EBLSTM. 
 

Conclusions 
The accurate short term load forecasting is a 

critical task for making energy policy in the electricity 
system. The proper planning, scheduling and 
dispatching of load demand is also important for 
maintaining the stability and reliability of power 
system economically. In this paper, the EBGRU 
model is proposed as a hybrid model for improving 
the accuracy of the STLF. The highly correlated 
temperature data is also considered along with the 
history of load data for STLF. The time series load 
and temperature data is decomposed into IMFs and 
residue for denoising purpose. The relevant features 
are extracted effectively by using the Boruta feature 
selection for reducing the dimensionality. For tackling 
the uncertainty and temporal dependency of load, the 
forecasting is done using a GRU deep neural network. 
In terms of RMSE, MAE, and MAPE, the proposed 
EBGRU model is compared to the RNN, LSTM, 
GRU, EBRNN, and EBLSTM models. The EBRNN, 
EBLSTM and EBGRU produces less RMSE of 0.055, 
0.025 and 0.01, MAE of 0.093, 0,075 and 0.067, 
MAPE of 0.556, 0.456 and 0.414 compared to RNN, 
LSTM and GRU respectively. The result shows that 
the EBGRU model shows its generality and proves 
the superiority by outperforming other models. The 
proposed EBGRU model can be used for various time 
series applications like weather forecasting, financial 
forecasting and wind speed forecasting in the future. 
In particular, the proposed approach can be used to 

improve forecasting performance by combining time 
series data with large data of high dimension. 
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