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In this work, two phosphate solubilizing fungi viz., Aspergillus tubingensis S33 and A. niger S36 were studied under 

different physiochemical and nutritional parameters in the lab, and in vitro under soil-plant experiments at two very distinct 

agro-climatic conditions viz., Banasthali, Tonk (Rajasthan), and Dwarahat, Almora (Uttarakhand), India. Phosphate-solubilizing 

capability was checked with different carbon and nitrogen sources. Maltose, glucose, and fructose were optimal carbon source 

in A. tubingensis S33 while fructose in the case of A. awamori S33. Amongst nitrogen sources, S33 showed maximum 

phosphate solubilization with ammonium sulfate while, S36 with ammonium sulfate and sodium nitrate. Ammonium was more 

stimulating than nitrate as the chief nitrogen source. In vivo experiments revealed that solubilization was noticeable at all the 

temperatures, but optimal temperature was 25–35℃. The optimal initial pH for Tricalcium Phosphate (TCP) solubilization was 

8.0. The ideal concentration of TCP for solubilization was 7.5 g∙l−1. The application of both strains in two different geographical 

sites exhibited a significant (p<0.05) rise in wheat growth, grain yield, and available Phosphorus (P). Fungal inoculation with 

TCP amendment exhibited a more notable effect on growth, yield, and soil fertility than control. This study support that these 

isolates will be able to work efficiently in varied climatic conditions and will show consistent efficiency on field application.  
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Introduction 

Excessive application of chemical fertilizer not 

only affects the environment, soil health, and 

economy but also the availability of nutrients. When 

mineral phosphate fertilizer is applied to soil, only 

10–25% is available to plant, and the rest is changed 

to the unavailable form by precipitation with a cation 

such as Fe3+, Mg2+, Al3+, and Ca2+. In nature, many 

microbes can remobilize this unavailable form of P 

and are called phosphate solubilizing microbes 

(PSMs). These microbes are present in small 

numbers, so they are isolated from the environment, 

multiplied, and further artificially re-inoculated in 

high numbers in the soil and called biofertilizers.1–5  

There are several reports where isolates showed high 

phosphate-solubilizing potential in labs, but sporadic 

literature on successful consistent field application.1,2,6 

The possible reason was the climate that produced 

different biotic and abiotic stresses in varied 

geographical region.7,8 Rashid et al.9 stated that treatment 

of wheat with PSMs in the different ecological zone of 

the same state (Punjab) showed variation in growth and 

yield. Abiotic stress includes varied nutritional and 

mineralogical conditions viz., type of carbon, nitrogen, 

un-available phosphorus sources, and their 

concentration; physical conditions viz., pH, temperature, 

humidity, etc. that differ from soil to soil and with 

geographical regions. All these abiotic with biotic stress 

make the performance of PSMs inconsistent. Therefore, 

strains with broad-spectrum performance are more 

suitable for development of biofertilizers. Keeping the 

above points in mind, the current study aimed to 

characterize the phosphate-solubilizing fungal (PSF) 

strains viz., A. tubingensis S33 and A. niger S36 to 

varied physiochemical and nutritional condition. In 

addition, the assessment of these strains as potential 

biofertilizers for wheat was done at two different agro-

climatic locations viz., Banasthali, Tonk, Rajasthan, and 

Dwarahat, Uttarakhand, during the same period to 

compare the effectiveness of these bio-inoculants.  

Materials and Methods 

Microorganisms 

The microorganisms viz., A. tubingensis S33, and A. 

niger S36 were previously separated from rhizosphere of 
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Vigna radiate cultivated at Banasthali, Rajasthan, India. 

They were initially recognized on the basis of colony 

morphology and staining methods. Further, affirmation 

was done by molecular methods by amplifying the 

fungal DNA (ITS1-5.8S-ITS4 region) by using universal 

primers ITS-1 and ITS4. The PCR reaction mixture 

comprised of DNA (100–200 ng), Tris–HCl (pH 8.4) 

(20 mM ); dNTPs (0.1 mM ); MgCl2 (1.5 mM); primer 

(0.3 μM); and Taq polymerase (1.5 U) (Bangalore 

Genei, India) with final volume 25 μl. The reaction 

mixture was kept in a Mastercycler (BIO-RAD Gene 

Cycler™) with initial denaturation at 95℃ for 4.5 

minutes, followed by 40 cycles of denaturation at 95℃ 

for 30 seconds, annealing at 52℃ for 30 seconds, and 

extension phase at 72℃ for 30 seconds, followed by 

final extension phase at 72℃ for 3 minutes. PCR 

products were extracted on agarose gel (1.2%) and 

cleaned by Geneaid Biotech. Ltd. Gel/PCR DNA 

fragment extraction kit. The PCR product was 

sequenced at Banglore Genei.1 

The comparative analysis of fungal ITS1-5.8S-ITS2 

region by the Basic Local Alignment Search Tool 

(BLAST) confirmed S36 as A. niger and S33 as A. 

tubingensis. These sequences were deposited under 

accession numbers JF313460 (S33) and JF313461 (S36) 

in the National Center for Biotechnology Information 

(NCBI).1 Both strains were sub-cultured every month on 

potato dextrose agar (PDA) slants and stored at 4oC. 

 
Effect of Carbon and Nitrogen Source 

The effect of carbon source on phosphate 

solubilization was studied by replacing the glucose 

(1%) present in Pikovaskaya's (PVK) broth with 

maltose, fructose, mannitol, sucrose and sorbitol. In 

the second experiment, ammonium sulfate (AS; 0.5%) 

was replaced with varied nitrogen (N) sources viz., 

Ammonium Nitrate (AN), Ammonium Chloride 

(AC), Potassium Nitrate (PN), Sodium Nitrate (SN), 

and urea (U) in PVK broth. One ml spore suspension 

(5×105 CFU∙ml
－1) was inoculated in all the flasks and 

incubated at 130 rpm and 30 ± 2℃ in a incubator 

shaker for 6 days. Uninoculated broth was treated as 

control and samples were withdrawn at each 48 h. 

Sixth-day culture broth of different carbon sources 

was filtered and the filtrate was used for organic acid 

examination by high-performance liquid 

chromatography (HPLC; SCL-10AVP Shimadzu), 

using ODS-3 column (Whatman).10 
 

Effect of Different Concentrations of Tricalcium Phosphate (TCP) 

The impact of TCP concentrations on soluble P 

was studied by varying TCP concentrations viz., 1, 2, 

3, 4, 5, 7.5, and 10 g∙l−1 in PVK broth. For inoculation 

and incubation, same method was used as above.  
 

Effect of Different Physical Factors 

To study the impact of pH, the initial pH of PVK 

broth was adjusted at 6, 7, 8, 9, and 10. To study the P 

solubilization efficiency at various temperatures, 

spore inoculated flasks were kept at distinct 

temperatures viz., 15, 25, 35, and 45 ± 2℃ on a 

shaker (130 rpm, 12 days). All experiments were 

executed in triplicate.  
 

Chemical Analysis of Culture Broth 

The qquantitative soluble P determination was 

done by molybdenum-blue method11 and the pH was 

measured by digital pH meter. 
 

Inoculum Preparation  

For inocula preparation, both strains were cultured 

on PVK agar media at 30℃ for 5 days. The spores 

were collected from the plate using autoclaved 

distilled water, and 5×108 CFU∙ml−1 adjusted by 

hemocytometer. 
 

Soil- Plant Experiment 

Pot experiments were conducted at two different 

agro-climatic sites viz., the semi-arid climate of 

Banasthali, Rajasthan (26.38ºN 75.87ºE, 315 m 

altitude) and the subtropical climate of Dwarahat, 

Uttarakhand (29.78ºN 79.43ºE, Himalayan hilly 

terrain, 1467 m altitude) (Table 1). Soil-plant 

experiment was conducted in Plastic pots (2 kg) with 

unsterile soil in an entirely randomized block design. 

The soil was sieved (mesh, 2 mm), mixed with 0.1% 

TCP, and then filled in pots. The experiment 

consisted of nine treatments (with three replication 

Table 1 — Climatic and physio-chemical properties of soils of two experimental sites 
Site Agro-climatic 

region 

Soil type Altitude/latitude Climate  pH Available P 

(kg∙ha−1) 

Organic C 

Dwarahat, District 

Almora, Uttarakhand 

Hills, Western 

Himalayas 

Loamy 29·7833/ 79·4333  

1467 M above from 

the sea level 

30–70 mm rain fall; 

12–22℃ in summer;  

1–5℃ in winter 

6.5 9 0.322% 

Banasthali, 

District Tonk, 

Rajasthan  

Semi-arid 

Eastern plain 

region 

Sandy loam 26.4083 / 75.8649 

289 M above from  

sea level 

500–700 mm rain fall  

32–45℃ in summer;  

12–15℃ in winter 

8.5 5.08 0.78% 
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each): (1) control (only soil), (2) soil+TCP (19.97 

mg∙g−1 P); (3) soil + SSP; (4) soil + S33; (5) soil + 

S36; (6) soil + S33 + S36; (7) soil + TCP + S33; (8) 

soil + TCP + S36; (9) soil + TCP + S33 + S36. Soil 

and soil + TCP were taken as controls. 

Surface sterilization of seeds was done with 0.1% 

NaOCl solution treatment followed by distilled water 

washing. Then the exterior soil was removed and ten 

seeds were arranged evenly in pots. One ml inoculum 

was evenly sprinkled on the seeds and then covered 

by soil. After an hour, watering was performed and 

then periodically. After germination, thinning was 

performed (five plants per pot). 

Plants were uprooted on the 110th day of sowing, and 

their root and shoot lengths, dry weights, and total P in 

root and shoot were recorded. The total P was 

determined by the vanadomolybdophosphoric acid 

method.12 The tightly adhering soil of roots was 

collected in sterilized bags and further used for the 

determination of available soil P by colorimetric 

method.13 

Statistical Analysis 

The data attained was processed by analysis of 

variance (ANOVA) and the difference among 

parameters was done by Duncan tests employing 

SPSS software (version 16.0). 

Results and Discussion 

Many workers have demonstrated the 

advantageous effects of PSF on several crops viz., 

P. oxalicum on wheat and maize6; A. awamori and

P. citrinum on chickpea14; P. expansum,  Mucor

ramosissimus, and Candida krissii on wheat15;

P. oxalicum I1 on maize16; P. oxalicum P4

and A.niger P85 on maize17; A. niger and

P. brevicompactum on coffee18; Penicillium sp. EU-

DSF-10 on Sorghum bicolour19; Penicillium

rugulosum on maize.20 However, sporadic literature is 

available on in vivo as well as in vitro characterization 

of different physical, nutritional, and agro-climatic 

conditions to understand the adaptability behaviour 

of bio-inoculants in actual field conditions. 

Cakmakci et al.21 studied the growth improvement of 

sugar beet by plant growth-promoting rhizo bacteria 

in two soil types having different organic matters and 

observed that Bacillus RC07 had great possibility to 

be developed as bio fertilizer. Similarly, Kaur & 

Reddy22 studied PSB-3 and PSB-5 as bio-inoculants 

for the improvement of maize and wheat crops at 

three discrete agro-climatic zones viz., central plain, 

sub-mountain undulating central and sub-mountain 

undulating zone. In the current research, the potential 

of A. niger S33 and A. tubingensis S36 was not only 

studied in broth by varying the physical and 

nutritional factors, but also in the soil-plant 

experiment with wheat in two different agro-climatic 

conditions viz., Banasthali, Rajasthan (semi-arid 

region) and Dwarahat, Uttarakhand (hilly western 

Himalayan region).  

Effect of Carbon and Nitrogen Source 

Both strains were solubilized the inorganic 

phosphate with all tested C sources (Fig. 1a). The 

strain A. awamori S33 showed a significant 

preference for maltose, glucose, and fructose, 

followed by sorbitol. The significantly lowest pH 

values were found with maltose and fructose. In the 

case of A. awamori S36, fructose was a significantly 

better C source, followed by sorbitol > maltose ≥ 

sucrose ≥ glucose > mannitol. Different authors stated 

that different strains preferred distinct carbon sources 

viz., A. awamori S29 used maltose1; A. niger preferred 

maltose and mannitol23; A. aculeatus preferred 

arabinose and glucose.24 

Fig. 1 — Effect of different substrate carbon on amount of soluble P and pH: (a) Carbon sources (Glu = glucose, Fru = fructose, Man = 

mannitol, Sor = sorbitol, Mal = maltose, Suc = sucrose, NC = no carbon), and (b) Nitrogen sources (AN = ammonium nitrate, AC = 

ammonium chloride, AS = ammonium sulphate, PN = potassium nitrate, SN = sodium nitrate, U = urea)  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/penicillium
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In all cases, a significant negative correlation was 

noted between phosphate solubilzation and pH. The 

possible reason for the pH decrease was organic acid 

production by fungi. Further, to determine organic 

acids, six-day-old culture filtrate was used for organic 

acid analysis by HPLC. Both strains produced the 

highest total organic acid in the presence of sucrose 

(Table 2) which was 54.58 and 60.8 g∙l−1 for S33 and 

S36, respectively. That is high in comparison to 

reported by Li et al.25 for NJDL-03 (~4000 mg∙l−1) 

and NJDL-12 (~10,000 mg∙l−1). The most commonly 

produced acids was oxalic and citric and other acids 

are malic succinic and fumaric. Many authors 

reported that PSFs secrete varied organic acids, viz., 

butyric, citric, fumeric, gluconic, malic, oxalic, 

succinic, and tartaric.25–27 

S36 produced the highest amount of citric acid i.e. 

35.55 g∙l−1 and 35.44 g∙l−1 in the presence of glucose 

and fructose, respectively. In the presence of sucrose, 

the major acids were citric, malic, and succinic in 

both strains. There are also reports where citric and 

oxalic acids were two major organic acid that 

solubilize inorganic P through the release of acidic 

protons or by chelate metal ions.15,16,24–28 

In the case of S33, maltose showed the lowest acid 

production, but significantly higher phosphate 

solubilization which points out the existence of some 

other phosphate solubilization mechanisms.  

Both strains can solubilize the TCP in the presence 

of all tested nitrogen sources (Fig. 1b). In S33 strains, 

significantly highest phosphate solubilization was 

observed with AS followed by AC > PN > AN > U > 

SN. While A. awamori S36 exhibited significantly 

higher amount of soluble P when SN and AS were 

used as nitrogen sources. Hence, it can be inferred 

that these strains can solubilize TCP efficiently with 

both forms of nitrogen. Similar results were reported 

by Reyes et al.29 for P. rugulosum. 

Effect of pH 

Both the strains can grow and solubilize the 

phosphate at a wide range of pH 6–10 (Fig. 2a). 

Dhakar and Pandey30 reported that microbes isolated 

from extreme conditions showed wide pH tolerance. 

When phosphate solubilization at varied pH was 

analyzed, it was found that both the strains attained 

significantly higher soluble P at pH 8.00, while 

minimum soluble P was noted at pH 10.00. It can be 

inferred that the strains isolated from alkaline soil 

have the potential to solubilize phosphate at high pH. 

Similar findings were quoted by Jain et al.10,31 for PSF 

and by Nautiyal et al.32 in the case of PSM. S36 was 

able to solubilize P (122 mg∙l−1) even at pH 10.00. 

In general, phosphate solubilization went up with 

the dropping pH. Both strains showed significantly 

lower pH at pH 8.00. Maximum pH drop due to acid 

production was attained within 48 hours of 

inoculation when the initial media pH was adjusted at 

6.00, 7.00, and 8.00. Whereas for initial pH 9.00 and 

10.00, the maximum drop in pH values was shifted to 

later days of growth. Primarily, there was a significant 

negative correlation noted between Phosphate 

solubilization and pH at all tested pHs, except at 

10. Singal et al.33 found that pH 6.00 was most

Table 2 — Organic acid produced by S33 and S36 strains in the presence of 6 different carbon sources 

Carbon source Oxalic acid 

(g∙l−1) 

Malic acid 

(g∙l−1) 

Citric acid 

(g∙l−1) 

Succinic acid 

(mg∙l−1) 

Fumaric acid 

(g∙l−1) 

Total acid 

(g∙l−1) 

A. tubingensis S33

Glucose 0.69 2.50 22.84 － 0.02 26.05 

Fructose 3.20 4.15 26.43 16.52 － 50.30 

Maltose 0.72 － 4.80 0.52 － 6.04 

Sucrose 4.14 32.45 11.81 5.90 0.28 54.58 

Mannitol 5.42 2.19 2.81 1.45 0.02 7.02 

Sorbitol 2.76 9.10 16.71 14.85 43.43 

A. niger S36

Glucose 1.08 3.89 35.55 － 0.02 40.55 

Fructose 1.08 3.90 35.44 － 0.02 40.44 

Maltose 0.70 11.63 15.88 － － 28.21 

Sucrose 2.84 18.64 28.77 10.50 0.05 60.80 

Mannitol 0.54 1.02 3.31 2.23 0.02 7.11 

Sorbitol 2.45 3.04 15.68 10.38 0.02 31.57 
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conducive for rock phosphate solubilization by A. 

japonicus and A. foetidus. Xiao et al.34 found 

the optimum pH for RP solubilzation as 5.5 for C. 

krissii, 7.5 for M. ramosissimus and 7.0 for  

P. expansum.

Effect of TCP Concentration 

A saturation study was performed by growing these 

strains with different concentrations of TCP (Fig. 2b). 

The objective was to check the impact on phosphate 

solubilization with TCP concentration rise. Overall, a 

significant lift in available P was observed with the 

rise in TCP (1 to 10 g∙l−1). However, an insignificant 

rise was observed in soluble P content with 7.5 and 10 

g∙l−1 TCP. Maximum soluble P i.e. 818 mg∙l−1 was 

observed in S33, followed by 558 mg∙l−1 in S36 at 7.5 

g∙l−1 TCP concentration. Further, the media with 

lesser quantities of TCP was more acidic in 

comparison to the media with greater amounts. 

Gaur & Sachar35 also made similar observations 

with rock phosphate. 

Effect of Temperature 

The impact of temperature on soluble P efficiency, 

four temperatures viz., 15, 25, 35, and 45℃ were 

selected. The results are depicted in Fig. 3 (a–d). 

All inoculated flasks showed significant change in 

pH and phosphate solubilization over control. 

Uninoculated flasks remained almost consistent 

with regard to pH during 12 days study period.  

Fig. 2 — Effect of initial conditions on amount of soluble P and pH: (a) pH, and (b) TCP concentration 

Fig. 3 (a–d) — Tri-calcium phosphate solbilization (bar graph) and changes in pH (line graph) of broth by A. tubingensis S33 

(dark coloured bar and line graph) and A. niger S36 (grey coloured line with empty circle and bar graph) at four different temperature viz., 

(a) 15℃, (b) 25℃, (c) 35℃, and (d) 45℃
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Overall, S36 performed significantly (P<0.05) 

better than S33, except at 15℃. A negative 

correlation was seen between soluble P and pH at 

every tested temperature, except 45℃. The ideal 

temperature for phosphate solubilization was found 

25 and 35℃. Rawat & Tewari36 reported optimal 

temperature for Trichoderma viride at 28℃ and 

Barroso et al.23 for A. niger at 30℃. 

Two solubilization patterns were observed during 

the experiment. The first one, observed at 15 and 

25℃, showed the initial sharp increase in phosphate 

solubilization and then it became gradual. On the 

other hand, at 35 and 45℃ phosphate solubilizing 

capacity reached at peak before decreasing and then 

increasing second time. Many authors also described 

such correlation.31,37–39 There are reports where pH 

drop was found directly related to organic acid 

production in medium.31,40,41

Effect of Fungal Inoculants on Plant Growth and Yield 

Both fungi exhibited a significant growth and yield 

hike in wheat plants than uninoculated control plants 

Fig. 4 (a–h) — Effect on Triticum aestivum plant growth and yield after inoculating with A. tubingensis S33, A. niger S36 and S33 + S36 

consortiumin TCP amended and unamended soil: (a) shoot length (b) root length (c) shoot dry weight (d) root dry weight (e) grain yield 

(f) shoot P (g) Seed P, and (h) Available P; Data are means of five replicates; Mean values with the same letters do not differ significantly

by Duncan’s multiple range test at P ≤ 0.05



JAIN et al.: IMPACT OF VARIED AGROCLIMATIC CONDITION ON PHOSPHATE SOLUBILIZATION 

 

 

1273 

(Fig. 4 a–h; Plate 1) at both agro-climatic regions. 

Fungal inoculated plants performed either comparable 

or significantly better in comparison to chemical 

fertilizer at both agro-climatic conditions. As depicted 

in Fig. 4 a–e, the consortium showed significant hike 

in all growth and yield variables after 110 days of 

growth in Dwarahat region. The enhancement in 

shoot length, root length, shoot dry weight, root dry 

weight and grain weight was 9, 30, 86, 48 and 75%, 

respectively. The performance of consortium was 

better in second half of the growth cycle. The possible 

reason could be that these fungal isolates were not the 

native of this region, therefore faced more 

competition when inoculated singly. In consortium, 

the strains helped each other to overcome the stress, 

resulting in significantly good results in a second half 

of growth. This also supports the views expressed by 

earlier studies42–45 that the joint application of fungal 

inoculants might improve efficacy and performance 

over inoculation with individual fungal inoculants.  

On the contrary, in Banasthali region, both joint and 

individual strain inoculations, performed comparable. 

The reason may be that the strains are native of that 

environment, hence face less competition with other 

microbial community. Consortium inoculated plants 

showed increase in shoot dry weight (70%), grain yield 

(65%) and shoot length (27%) in comparison to 

uninoculated control. When the plant growth was 

compared between plants grown in hilly western 

Himalayan and semi arid plain regions, the hilly climate 

had significant stimulatory effect on plants with respect 

to length and dry weight of shoot. There are many 

reports of yield upliftment due to treatment of PSF with 

external P source.
1,6,14

 Kaur & Reddy
21

 recorded 

significant improvement in soil fertility and crop yield 

on three geographical locations with PSFs and external P 

in contrast to uninoculated control. 

Effect of Fungal Inoculants on Nutrient Uptake by Plant 

The results presented in Fig. 4 (f) and (g) deduced 

that total P assimilation was significantly increased in 

wheat plants by treatment of S33 and S36 in 

comparison to uninoculated control at both agro-

climatic conditions. When pots contained soil 

enriched with TCP, highest shoot and seed P was 

shown by consortium at both agro-climatic conditions 

i.e. 92% and 43% at Banasthali region and 89% and 

32% at Dwarahat region, respectively. There are 

many reports where increase in P uptakes was 

observed by inoculation of PSF.6,14 

 
Effect of Fungal Inoculants on Available P  

Available P in wheat's rhizosphere soil 

significantly increased in contrast to sowing  

(Fig. 4 h). In the Banasthali region, S33 + TCP 

showed a significant increase in available P (9.6 

kg∙ha−1). In the Dwarahat region, the highest available 

P was observed in the consortium (12.2 kg∙ha−1) with 

TCP enriched soil. There are reports of increases in 

the soil available P content viz., Penicillium oxalicum 

increased in wheat and maize6; A. awamori and P. 

Citrinum raised soil P in chickpeas.14 It raised soil 

fertility for the next crop. 

 
Conclusion  

In conclusion, A. tubingenesis S33 and A. 

niger S36 successfully stimulated the growth of wheat 

in the pot experiments at two different geographical 

sites. They are accustomed well to the stress 

conditions in vivo as well as in vitro. That  

indicates the potential of both fungi to be further 

developed as a successful bio-fertilizer for 

commercialization.  
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Plate 1 — Wheat plants without inoculation, amended with 

soluble super phosphate (SSP), inoculated with A. tubingensis 

S33, A. niger S36 and S33 + S36 consortium along with 

tri-calcium phosphate (TCP) fertilization after 30 days of sowing 

at Dwarahat, Almora (Uttarakhand) India 
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