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Dynamic Stochastic General Equilibrium (DSGE) models allow for probabilistic estimations with the aim of formulating 

macroeconomic policies and monitoring them. In this study, we propose to apply the Sequential Monte Carlo Multilevel 

algorithm and Approximate Bayesian Computation (MLSMC-ABC) to increase the robustness of DSGE models built for 

small samples and with irregular data. Our results indicate that MLSMC-ABC improves the estimation of these models in 

two aspects. Firstly, the accuracy levels of the existing models are increased, and secondly, the cost of the resources used is 
reduced due to the need for shorter execution time. 
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Introduction 

Recently, the importance of the Dynamic 

Stochastic General Equilibrium (DSGE) models has 

increased due to its applications in the analysis of 

economic cycles and in the detection of recessions
1-3

. 

These models are being evaluated by the result 

obtained in the standard deviation, the size of the 

sample, as well as the regularity of the data. The 

evaluation of the models constructed in the previous 

literature has shown different adjustments. For 

example, models constructed with non-Bayesian 

techniques have provided an adjustment of 0.17-0.20 

standard deviation with large (more than 100 

observations) and regular samples
4,5

, but their 

adjustments are between 0.28-0.36 when constructed 

with small samples and irregular data
6,7

. On the other 

hand, models that have used Bayesian probability 

computational technique have obtained better results 

than those previously described. With large samples 

and with regular data these models have obtained a 

precision between 0.14-0.38
1,8

, while in the case of 

small samples and irregular data the results have been 

0.24-0.40
3,9

. These previous works applied 

computational methods such as Particle Markov 

Chain Monte Carlo, Sequential Monte Carlo Squared, 

Approximate Bayesian Computation Sequential 

Monte Carlo and Kalman quadratic filter. In order to 

solve the problems of accuracy of the existing DSGE 

models, this paper develops a Multilevel Sequential 

Monte Carlo algorithm in its variant of Approximate 

Bayesian Computation (MLSMC-ABC), which has 

already demonstrated its methodological superiority 

in other economic areas in carrying out accurate 

sampling with few observations and with irregular 

data distributions
10,11

. Our results show a more robust 

estimation in terms of accuracy, a saving in 

calculation costs and, a better behaviour with small 

and irregular samples compared to the Bayesian 

computational methods recently used in the  

previous literature
3,8,9,12

.  
 

Methods 

In this work, we have built a DSGE model using 

Bayesian Monte Carlo ABC methods. A sample of data 

has been drawn from which the variables that represent 

the model have been extracted. The DSGE model used 

is the popular Smets-Wouters model, to which the 

MLSMC-ABC algorithm is applied for its resolution, 

obtaining the optimal values of the parameters of the 

equations that represent the model. Finally, we apply the 

Bayesian selection function Marginal Data Density 

(MDD) with which the standard deviations (STD) of the 

chosen computational algorithm are obtained. The 

methodological process applied in the present study is 

illustrated in Figure 1. 
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Multilevel Sequential Monte Carlo in Approximate Bayesian 

Computation (MLSMC-ABC) 

ABC is a method without likelihood functions by 

which the previous distribution is updated with the 

information provided by the moments
11

. Multilevel 

Monte Carlo samplers for ABC has the property of 

recalculating the weights, in order to adapt to the data 

sample applied in an optimal way, so it is quite 

efficient working with a small dimensionality of data. 

The approach of Beskos et al.
13

 is to avoid the 

problem of optimization with small samples, the 

method of samples of importance is applied in order 

to reduce the variance, as an alternative method to the 

sampling of acceptance-rejection commonly used in 

Monte Carlo simulations, forming a first distribution 

to which the sequential Monte Carlo samplers 

(SMC)
14

 are applied to perform the simulation. 

Therefore, the function of weight distribution is 

defined as Gn (x)=kn+1 (x)/kn (x) and the discrete-time 

approximation function of knas Zn = ∫E K∈n (y,u) f(u|θ) 

π(θ) d(u, θ), that help obtain the multilevel identity 

equation (1). 

 

𝜂𝐿 𝜑 =
𝑍0

𝑍1
𝜂0 𝐺0𝜑 +  𝜂𝑙−1   

𝑍𝑙−1

𝑍𝑙
𝐺𝑙−1 − 1 𝜑 𝐿

𝑙=2   … (1) 

 

In order to apply the SMC sampler to obtain a set 

of samples that represent all the possible scenarios 

sequentially distributed in a way 𝜼𝟎,𝜼𝟏…𝜼𝑳−𝟏
11,15

, 

the estimation process begins once the particle 

population is organized by sampling with random 

variables, independent and identically distributed 

from 𝜼𝟎. Then, at each step, a Markov Chain Monte 

Carlo (MCMC) is resampled and applied to transform 

the particles. We denote it as (𝑿𝟎
𝟏:𝑵𝟎 ,… ,𝑿𝑳−𝟏

𝟏:𝑵𝑳−𝟏) with 

+∞> N0≥N1≥…NL-1≥1, the particles, after the 

transformation, are re-sampled, denoting it as 𝑿𝒍
𝟏:𝑵𝒍, 

according to the weights 𝑮𝒍  𝑿𝒍
𝒊 = (

𝒌𝒍+𝟏

𝒌𝒍
)(𝑿𝒍

𝒊), and 

for the indices 𝒍 ∊  𝟏,… , 𝑳 − 𝟏 .  𝑴𝒍 𝟏≤𝒍≤𝑳−𝟏denotes 

a sequence of MCMC kernels, with the 

property 𝜼𝒍𝑴𝒍 = 𝜼𝒍. For 𝝋:𝑬 → 𝕽, 𝒍 ∊  𝟏,… ,𝑳 , we 

would have the estimator of 𝑬𝜼𝒍−𝟏 𝝋(𝑿) . This 

mathematical development can be checked in the 

work of Beskos et al.
13. 

The joint likelihood 

distribution for the SMC algorithm is: 

 

 𝜂0
𝑁0
𝑖=1 (𝑑𝑥0

𝑖 )  
𝜂𝑙−1
𝑁𝑡−1 (𝐺𝑙−1𝑀𝑙(𝑑𝑥 𝑙

𝑖))

𝜂𝑙−1
𝑁𝑡−1 𝐺𝑙−1 

                     𝑁𝑙
𝑖=1

𝐿−1
𝑖=1 …(2) 

 

Advancing after the previous procedure, you would 

get samples 𝑋𝐿
𝑖  
𝑖=1

𝑁𝑙
, so a standard SMC estimate 

according to the equation (1) would be 𝜂𝐿
𝑁𝐿 (𝑔); at this 

point, the previous samples are discarded
11

. An 

approximation of SMC for equation (1) would be as it 

appears in equation (5). 

 

𝑌 =   
𝜂𝑙−1
𝑁𝑡−1 𝜑𝐺𝑙−1 

𝜂𝑙−1
𝑁𝑡−1 𝐺𝑙−1 

𝜂𝑙−1
𝑁𝑡−1 (𝜑) 𝐿

𝑙=2
𝜂0
𝑁0 𝜑𝐺0 

𝜂0
𝑁0 𝐺0 

  … (3) 

 

Showing that the mean square error (MSE) of 

MLSMC methodis limited by: 
 

 𝜂𝐿 𝜑 − 𝜂∞ 𝜑  
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 … (4) 

 

where  .  ∞shows the simulations, property and 

𝐶 < +∞,𝐤 ∈ (𝟎,𝟏) they are constants that do not 

depend onl, q.  
 

Smets-Wouters (SW) Model 

The SW model is a standard-scale New Keynesian 

macroeconomic model that has become a reference 

point in the literature of the DSGE models
16

. In our 

 
 

Fig. 1 — Flowchart of research 
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analysis, we consider two distributions. The first 

distribution, which we refer to as a prior standard, 

includes the initial fixed parameters used by the 

previous literature for the SW model
3
. The second 

distribution is obtained after estimating the model and 

we call it diffuse prior (Table 2). The SW model is 

estimated based on seven macroeconomic time series 

and can be checked these initial equations in the work 

of Smets and Wouters
16

. As main indicators, this 

model includes the GDP growth, the rate of inflation, 

the interest rate, the growth of consumption, the 

growth of investment, the growth of wages, and the 

hours worked. In addition, given that the 

technological impact in the SW model is assumed to 

be stationary, the model variables are not transformed 

to introduce seasonality, and therefore, the growth 

rate of the technological impact does not appear in the 

measurement equations. Based on the aforementioned 

information, the SW model uses the following fixed 

parameters in the estimation in its previous 

distributions (standard prior) are denoted as follows:  

δ = 0.025, gy = 0.18, w
  = 1.50 andεw= εp= 10, where 

δ is the depreciation rate, gyis the exogenous 

spending-GDP rate, λwis the steady-state mark-up in 

the labour market and εw,εp are the parameters of the 

aggregators in the goods and the labour market.  

In addition, the following additional parameters are 

used to estimate the SW model and are denoted as 

follows:θ =5.00, ζc=1.5, h = 0.7,ξw =0.7, ζl= 2, ξp= 

0.7, ηw=0.5, ηp= 0.5, rπ= 2 and α= 0.3, whereθis the 

steady-state elasticity of the capital adjustment, ζcis 

the intertemporal elasticity of substitution, h is the 

habit parameter,ξw is the degree of wage stickiness, 

ζlis the elasticityin labour supply, ξp is the degree of 

price stickiness, ηwis the degree of indexation to past 

wage, ηpis the degree of indexation to past 

inflation,rπis the real interest and αis the share of 

capital in production. The log-linearized equilibrium 

conditions are necessary as the final step for 

estimating the model. These conditions are expressed 

in the work of Smets-Wouters
16

. These conditions 

mentioned are composed for fourteen endogenous 

variables defined as follows: output (yt), consumption 

(ct), investment (it), the current value of the capital 

stock (qt), capital (𝑘𝑡
𝑠), the accumulation of the 

installed capital (kt), the capital utilisation rate (zt), the 

rental rate of capital (
k

t
r ), the price mark-up (

p

t
 ), 

inflation (πt), the wage mark-up ( t


 ), real wage (ωt), 

labour services (lt), nominal interest rate (rt).The 

stochastic behaviour of the system of linear rational 

Table 2 — SW Model with Diffuse Prior (Posterior Comparison) 

  SMC ABC-SMC MLSMC-ABC 

Parameter Mean [0.05,0.95] STD(Mean) Mean [0.05,0.95] STD(Mean) Mean [0.05,0.95] STD(Mean) 

σl 3.02 [ 1.43, 5.14] 0.05 3.05 [ 1.96, 4.17] 0.0013 3.03 [ 2.37, 4.09] 0.00055 

l -0.04 [-2.94, 2.96] 0.07 -0.02 [-1.92, 1.98] 0.0024 -0.05 [-1.95, 1.91] 0.00071 

ιp 0.13 [ 0.01, 0.28] 0.01 0.14 [ 0.04, 0.23] 0.0064 0.11 [ 0.07, 0.18] 0.00042 

Φ 1.68 [ 1.48, 1.92] 0.01 1.69 [ 1.54, 1.93] 0.0040 1.70 [ 1.57, 1.91] 0.00084 

h 0.72 [ 0.57, 0.77] 0.02 0.66 [ 0.59, 0.78] 0.0032 0.67 [ 0.58, 0.76] 0.00038 

rπ 2.75 [ 2.11, 3.52] 0.03 2.78 [ 2.15, 3.21] 0.0035 2.79 [ 2.24, 3.13] 0.00027 

ρb 0.22 [ 0.03, 0.46] 0.01 0.23 [ 0.08, 0.42] 0.0088 0.23 [ 0.13, 0.39] 0.00034 

ϕ 8.01 [ 4.15, 12.51] 0.16 7.97 [ 5.36, 12.05] 0.017 8.05 [ 6.38, 10.12] 0.0014 

σp 0.16 [ 0.11, 0.22] 0.01 0.12 [ 0.11, 0.20] 0.0045 0.13 [ 0.10, 0.18] 0.0006 

ξp 0.70 [ 0.63, 0.81] 0.01 0.73 [ 0.63, 0.81] 0.0039 0.74 [ 0.65, 0.80] 0.00045 

ιw 0.72 [ 0.38, 0.95] 0.03 0.72 [ 0.44, 0.92] 0.0075 0.71 [ 0.61, 0.85] 0.00073 

µp 0.79 [ 0.54, 0.97] 0.02 0.80 [ 0.58, 0.94] 0.0094 0.78 [ 0.66, 0.87] 0.00062 

ρw 0.67 [ 0.19, 0.97] 0.04 0.71 [ 0.46, 0.99] 0.0098 0.70 [ 0.53, 0.92] 0.00036 

µw 0.65 [ 0.09, 0.98] 0.05 0.63 [ 0.16, 0.97] 0.0084 0.61 [ 0.43, 0.91] 0.00032 

ξw 0.95 [ 0.81, 0.97] 0.02 0.94 [ 0.82, 0.99] 0.0057 0.96 [ 0.85, 0.99] 0.00023 

Table 1 — SW Model: Log MDD Estimates 

Algorithm (Method)    MEAN(Log MDD)  STD(Log MDD) 

Standard Prior 

SMC   -906.528 0.39 

ABC-SMC  -863.284 0.27 

MLSMC-ABC   -827.446 0.14 

Diffuse Prior 

SMC   -881.025 0.28 

ABC-SMC  -858.929 0.21 

MLSMC-ABC   -815.272 0.09 
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expectations equations is addressed by seven 

exogenous shocks: total factor productivity (𝜀𝑡
𝑎 ), 

investment-specific technology(𝜀𝑡
𝑖), risk premium 

(𝜀𝑡
𝑏), exogenous spending (𝜀𝑡

𝑔
), price mark-up (𝜀𝑡

𝑝
), 

wage mark-up (𝜀𝑡
𝜔 ) andmonetary policy (𝜀𝑡

𝑟). 

 

Results and Conclusions 

For the construction of the model, data from the US 

economy for the period 2008Q1-2018Q4 have been 

used, obtained from the Federal Reserve Economic 

Data (FRED) of the Federal Reserve Bank of St. 

Louis. The sample consists of 40 observations with 

the purpose of making more demanding estimates 

than those made in previous studies, where samples 

with 100 or more observations were applied
3,9

. In 

addition to estimating the diffuse prior distribution, it 

is usual to estimate the so-called Marginal Data 

Density (MDD)p(Y) = ⌠p(Y/θ) p(θ) dθ for DSGE 

models
3,11

, since it provides a summary of the 

evidence contained in the results obtained by the 

model, becoming an essential indicator for the 

comparison of models and predictive analysis
17

. Table 1 

shows the estimates of the MDD after estimating the 

SW model. These results demonstrate the greater 

stability offered by the MLSMC-ABC algorithm 

compared to the rest, above all, based on the 

deviations obtained. Also, MLSMC-ABC improves 

the results obtained from previous work with the 

SMC and ABC-SMC algorithms
3,9

. 

We estimate posterior moments based on our 

proposed MLSMC-ABC algorithm as well as SMC-

ABC and a standard SMC algorithm. To assess the 

accuracy of the Monte Carlo methods, we run these 

algorithms 20 times and compute means and standard 

deviations of later moment estimates across runs. 

Table 2 shows the results of the estimates made by the 

different algorithms with the diffuse prior. Also 

included is a confidence interval of 5% where the 

value of each estimated parameter fluctuates. For 

example, the standard deviation of the estimate of the 

mean for μp (the coefficient for the salary margin) is 

0.00062. The average estimate of this coefficient is 

0.78, while for anyestimation, the coefficient of this 

variable would yield a mean value between 0.66 and 

0.87 within a confidence level of 95%.Therefore, the 

results of the standard deviation of the mean 

estimated from MLSMC-ABC, are much lower than 

those obtained by SMC or ABC-SMC, and even, 

taking as reference the results obtained in  

previous works
3,9

. 

This study presents an alternative simulation 

technique to estimate DSGE models. We show that, 

when properly adapted to DSGE models, the 

MLSMC-ABC technique is more robust than other 

commonly used algorithms such as Sequential Monte 

Carlo and Approximate Bayesian Computation 

Sequential Monte Carlo. Our results show high 

robustness of the MLSMC-ABC algorithm for small 

samples with irregular data, a concern shown by the 

previous literature in the estimation of DSGE models. 

Finally, the great precision shown by this new 

algorithm also implies an improvement in the 

optimization of the calculation of macroeconomic 

forecasting without the need to use a large amount of 

available resources, nor does it have to make a broad 

specification of the DSGE models, being vital 

importance for public institutions and other interest 

groups in macroeconomic analysis. 
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