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Recent studies apply the Monte Carlo method to try to solve multiple data problems for dynamic macroeconomic models 
such as measurement errors, residue correlation, and omitted variables. This paper evaluates the estimate of economic 
growth regressions from the Solow model by applying the Next Reaction Method, similar to the Monte Carlo kinetic 
methods. Our results indicate that with the said algorithm the estimation of these models improves since they increase the 
levels of precision of the existing models simulated with Monte Carlo, achieving faster the convergence of the coefficients 
of the variables reduces the possible measurement errors and the level of deviations. These results can be very useful  
in their application in dynamic macroeconomic models, which help the estimation challenges of policymakers and other 
related stakeholders. 
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Introduction 
Recently it has increased the importance of 

applying new computational methods for the 
estimation of macroeconomic models, mainly in 
economic growth models. These models are 
important, among other aspects, in the design of 
successful public policy for the economic 
development of countries, sustainable in the long run.1 
These models are being evaluated by the result 
obtained in the standard deviation of the regressions. 
The evaluation of the models built in the previous 
literature has yielded different adjustments. For 
example, models built with Monte Carlo have 
provided an adjustment of 0.12–0.47 of the square 
root of the mean error.1–3 In order to solve the 
problems of precision of the Monte Carlo method in 
estimating regressions of economic growth, this paper 
develops the Next Reaction Method algorithm, based 
on the Gillespie stochastic algorithm, similar to the 
Monte Carlo kinetic methods, which has already 
demonstrated in other scientific areas its 
methodological superiority in the uncertainty of 
estimation on aspects of measurement error, residual 
correlation and omitted variables1,2, something 
required in economic growth works that suffers from 
studies with powerful computational simulations.4 

Our results show a more robust estimate in terms of 
accuracy and better behavior in the face of 
measurement problems.2 These results can be very 
useful in their application in dynamic macroeconomic 
models, which help the estimation challenges of 
policy makers and other stakeholders. 
 

Method 

In this work, we have built a DSGE model using 
the Next Reaction Method, based on the stochastic 
simulation algorithms of Direct and First Reaction, 
which will be detailed in the Methods section.  
A sample of data has been prepared from which the 
variables representing the model have been extracted. 
This growth regression model used is the popular 
Solow model1, to which the Next Reaction Method 
algorithm is applied for its resolution, obtaining the 
optimal values of the parameters of the equations that 
represent the model. Finally, we apply the root mean 
square error (RMSE) function to analyze the error 
level of our algorithm with the previous literature. 
 

Stochastic Simulation Algorithm (SSA) 

Assume the system imply N variables {S1 ,...,SN}, 
defined by the state vector X(t) = [X1(t),...,XN(t)], 
where Xi(t) is the number of variables Si at time t. M 
reaction channels {R1,...,RM} are involved in the 
system.5 The dynamics of reaction channel Rj is 
represented by the propensity function aj and by the 
state change vector vj = (v1j ,...,vNj):aj(x)dt shows the 
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likelihood that given X(t) = x, one Rj reaction will 
happen in the next infinitesimal time interval [t, t+dt), 
and vij is the product of the change in the population 
of Si induced by one Rj reaction. 

The dynamics of the system is represented by the 
Eq. (1)  
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where the function P(x,t|x0,t0) denotes the 
likelihood that X(t) will be x, given that X(t0) = x0. 
The SSA is a popular stochastic simulation technique 
that is equivalent to Eq. (1). Starting from the initial 
states, the SSA simulates the trajectory trying to 
respond to the inquiries as to when time τ will be the 
next reaction, and which reaction channel index μ will 
be the next.6,7 The distributions of τ and μ are 
developed to respond to the two questions. 

The time τ, given X(t)=x, that the reaction will be 
at t+τ, is the exponentially distributed random 
variable with mean [1/a0(x)], p(τ=s) = a0(x) exp[-
a0(x)s], and the index μ of that firing reaction is the 
random variable with likelihood5,8 
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In every step, the SSA produces random numbers 
and estimates τ and μ according to the probability 
distributions (2) and (3).  

In every step, the direct method generates two 
random numbers r1 and r2 in U(0,1). The time for the 
next reaction to happen is given by t+τ.5,9 The index μ 
of the happening reaction is determined by the 
smallest integer. The system states are upgraded by 
X(t+τ) = X(t)+vμ. Then the simulation proceeds to the 
next occurring time.5,9,10 

The first reaction method produces a τk for each 
reaction channel Rk defined as follows 
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where r1 , . . . ,rM are M statistically independent 
samplings of U(0,1). Then τ and μ are selected as 
τ=min{τ1,…,τM} and µ = the index of min{τ1,…,τM}. 

The direct and the first reaction methods are 
equivalent to each other although they look 
different.5,8,10 The random pairs (τ, μ) generated by 
both methods follow the same distribution. The first 
reaction method eliminates M-1 unused reaction 
times. The reasoning for the advantage of the next 

reaction method over the direct method is based mainly 
on two observations: First, in each step, the next reaction 
method generates only one random number while the 
direct method needs two. Second, the search for the 
index μ of the next reaction channel takes O(M) time for 
the direct method, while the cost produced for the next 
reaction method is on the upgrade of the indexed priority 
queue which is O[ln(M)]. 5 
 
Next reaction method 

Cao, Li and Petzold5 show the transformation of 
the first reaction method into an equivalent but a more 
efficient new algorithm. The next reaction method is 
considerably faster than the first reaction method. It is 
widely known to be more efficient than the direct 
method when the system involves many variables and 
freely coupled reaction channels. The next reaction 
method can be considered as an extension of the first 
reaction method in which the M-1 unused reaction 
times are suitably changed for reuse. 
 
Specifications of growth regression 

Ditzen and Gundlach2 use a dynamic panel 
specification in discrete-time from the Solow model 
in continuous time to perform the simulation.  
This specification is explained by equation (4): 
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where all variables are cross-sectionally 
downgraded to eliminate time fixed effects, c is a 
regression constant, yi,t is per capita income of country 
i at time t, τ is the selected time interval, sk

i,t−τ and 
sh

i,t−τ are the investment rates in physical and human 
capital, ni,t−τ is the rate of population growth, g is the 
rate of technical change, δ is the depreciation rate,  
μi is a country fixed effect, and υi,t is a zero-mean error 
term that may be correlated with the regressors.1,2  
The explanatory variables sk, sh, and n are measured 
as τ-year averages, and it is assumed that g + δ = 0.07. 

All parameters bj (j = 1,…, 4) of equation (13) have 
well-defined interpretations that can be derived from 
the Solow model.1,2 For example, the true parameter 
b1 in the Eq. (1) is defined as follows: 𝑏ଵ ൌ 𝑒ିఒ௧ ൌ
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𝑒ିൣሺଵିఈିఉሻ൫௡೔,೟షഓା௚ାఋ൯൧ఛ, where λ = (1 − α − β) (ni,t−τ 
+ g + δ) is the rate of convergence to the steady-state. 
The rate of convergence can be derived from a first-
order Taylor approximation of the steady-state 
production function with α and β as the capital 
coefficients, such as the production elasticities of 
physical and human capital. Applying a steady-state 
parameterization of n = 0.01, g = 0.02, δ = 0.05, and 
supposing that α = β = 0.27, which is rigorously 
linked with standard parameterizations of factor 
shares2, derive a true value of b1 = 0.832 for  
λ = 0.0368 and τ = 5. 
 

Results and conclusions 
Table 1 shows our results for the averages of the 

BE estimates of the four coefficients of equation (13) 

over 1000 replications, dependent on varying the size 
of the coefficient b1 of the lagged endogenous 
variable. The first row in Table 1 provides our 
simulation results for an initial parameterization of 
Eq. (1) with b1 = 0.832, b2 = b3 = 0.099, and b4 = 
−0.197, following the work of Ditzen and Gundlach2. 
Our estimates of 𝑏෠ଵ, 𝑏෠ଶ, and 𝑏෠ଷ and 𝑏෠ସ are trying to 
replicate the Ditzen and Gundlach’ scheme2. In the 
same way, Table 2 shows the estimates of the capital 
coefficients α and β of the production function, and 
the coefficients of the two investment variables sk and 
sh. Unbiased estimates of the individual coefficients 𝑏෠௝ 
(j = 1, . . . , 4) would suggest capital coefficients in 
the range of 𝛼 ෝ = 𝛽መ  = 0.27. The comparison of the 
empirical (ESE) and the average (ASE) standard error 

Table 1 — Variation of bj (j = 1, . . . , 4) with alternative τ 

Τ True Estimated   True Estimated   
 b1 SM ESE RMSE b2 SM ESE RMSE 
 λ λ ASE Bias   ASE Bias 
5 0.832 0.998 0.012 0.126 0.099 0.09 0.021 0.018 
 0.037 0.001 0.012 13.3   0.02 -4.2 

10 0.692 0.924 0.024 0.152 0.181 0.179 0.029 0.031 
 0.037 0.011 0.025 21.8   0.029 -0.4 

20 0.479 0.697 0.041 0.157 0.306 0.323 0.047 0.048 
 0.037 0.013 0.038 32.5   0.048 3.1 

40 0.229 0.386 0.052 0.103 0.452 0.512 0.072 0.092 
 0.037 0.024 0.053 40.4   0.072 8.4 

Τ True Estimated   True Estimated   

 b3 SM ESE RMSE b4 SM ESE RMSE 
   ASE Bias   ASE Bias 
5 0.099 0.109 0.019 0.017 -0.197 -0.118 0.142 0.142 
   0.020 7   0.138 -31.5 

10 0.181 0.203 0.027 0.033 -0.361 -0.323 0.221 0.185 
   0.026 8.2   0.223 -6.8 

20 0.306 0.331 0.038 0.042 -0.612 -0.659 0.384 0.379 
   0.038 5.4   0.378 4.7 

40 0.452 0.485 0.051 0.059 -0.905 -1.357 0.514 0.664 
   0.050 3.9   0.511 42.6 

SM is the sample mean of the estimated coefficients over 1,000 replications. ESE is the empirical standard error, i.e., the standard 
deviation of the estimated coefficients. RMSE is the root-mean-squared error of the estimated coefficients. ASE is the average of the 
standard errors of the estimated coefficients. Bias is the deviation of the sample mean from the true coefficient in percent (in italics). λ is 
the convergence rate implied by the estimated bˆ1. Avg. abs. bias gives the arithmetic average of the absolute biases of the sample means 
in percent (in italics) 
 

Table 2 — Long-run coefficients and capital coefficients for alternative values of τ 

τ 𝑏෠ଶ/ሺ1 െ 𝑏෠ଵሻ 𝛼 ෝ 𝑏𝑖𝑎𝑠 𝑏෠ଷ/ሺ1 െ 𝑏෠ଵሻ 𝛽መ 𝑏𝑖𝑎𝑠 Average absolute bias 

5 21.043 0.383 25.386 0.462 72.3 
54.8 87.9 

10 1.315 0.271 1.475 0.336 28.4 
26.5 38.6 

20 0.924 0.268 0.873 0.274 14.8 
16.7 18.7 

40 0.739 0.245 0.688 0.229 7.2 
11.2 5.2 
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suggests that the simulation results can be considered 
as robust. The comparisons of the ESEs and the 
individual root-mean-squared errors (RMSE), both 
Table 1 and Table 2, conclude that our estimation 
obtains smaller deviations of the estimate by Ditzen 
and Gundlach2. 

Therefore, the results of the average errors 
estimated from the Next Reaction Method are much 
smaller than those obtained by Monte Carlo in the 
previous works.1,2 

This study presents an alternative simulation 
technique to estimate dynamic macroeconomic 
models. We demonstrate with the example of the 
economic growth regressions, when it adapts properly 
to this type of model, the Next Reaction technique is 
more efficient than other algorithms commonly used 
as Monte Carlo. Our results show high robustness  
of the Next Reaction algorithm, improving the 
convergence ratios of the coefficients, showing a 
smaller level of errors and biases, a concern shown by 
the previous literature. Finally, the great precision 
shown by this new algorithm also means an 
improvement in the optimization of the calculation of 
economic projections without using a large number of 
available resources, nor having to make a broad 
specification of the dynamic models to be used, being 
of vital importance for public institutions and other 
interest groups in macroeconomic analysis. 
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