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In textile manufacturing, fabric defect detection is an essential quality control step and a challenging task. Earlier, 
manual efforts were applied to detect defects in fabric production. Human exhaustion, time consumption, and lack of 
concentration are the main problems in the manual defect detection process. Machine vision systems based on deep learning 
play a vital role in the Industrial Internet of things (IIoT) and fully automated production processes. Deep learning centered 
on Convolution Neural Network (CNN) models have been commonly used in fabric defect detection, but most of these 
models require high computing resources. This work presents a lightweight MobileNetV2-based Transfer Learning model to 
assist defect detection with low power consumption, low latency, easy upgrade, more efficiency, and an automatic visual 
inspection system with edge computing. Firstly, different image transformation techniques were performed as data 
augmentation on four fabric datasets for the model's adaptability in various fabrics. Secondly, fine-tuning hyperparameters 
of the MobileNetV2 with transfer learning gives a lightweight, adaptable and scalable model that suits the resource-
constrained edge device. Finally, deploy the trained model to the NVIDIA Jetson Nano-kit edge device to make its detection 
faster. We assessed the model based on its accuracy, sensitivity rate, specificity rate, and F1 measure. The numerical 
simulation reveals that the model accuracy is 96.52%, precision is 96.52%, recall is 96.75%, and F1-Score is 96.52%.  
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Introduction 
Industry 4.0 (I4.0) involves changing factories 

from legacy systems to innovative mechanisms and 
intelligent machines, enabling digital factories, and 
eventually establishing an associated place of work 
and business ecosystem. The I4.0 intends to create 
intelligent, networked secure value chains by 
digitizing critical functional operations. By switching 
corporate processes and business models to I4.0, 
industries can save money and add new significance 
to the value chain. Most industrial manufacturing 
process companies desire intelligent and sustainable 
production systems to reduce product defects with 
more benefits. This process entails identifying the 
problem and designing a solution to prevent it from 
recurring.  

In the transition to I4.0, the textile manufacturing 
industry needs to develop its approach to transform 

the manufacturing process. Various studies on Fabric 
Defect Detection (FDD) have been carried out to 
enhance detection efficiency. Statistical, spectrum, 
model, and learning-based analysis are the most 
commonly used methods.1-3 The Statistical approach 
focuses on some statistical information about pixels, 
and the structural approach uses the primary essential 
qualities of texture's primitive elements. Spectral 
approaches employ structural and frequency data to 
assess the existence of fabric defects. Model-based 
approaches create a picture and retain the data 
reflecting its complete texture, whereas learning-
based approaches use labeled data to identify errors. 
However, the traditional approaches, on the other 
hand, rely on human vision analysis, shown in 
Fig. 1(a), which is time-consuming and slow 
productivity. 

Deep Learning (DL) algorithms have improved 
significantly over the years due to substantial growth 
in the computational power of Graphics Processing 
Units (GPUs). The DL algorithms have been helpful 
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for detection and classification problems, but there are 
still certain limitations in their application in specific 
industries.4,5 Fabric defects are defined in the textile 
business as any distortion in the fabric that leads the 
consumer to reject the product. An automatic FDD 
system is desired to reach the industry's necessities, 
such as low latency response, power usage, storage, 
operational efficiency, and real-time defect detection 
on the production line.6 This work provides an FDD 
method with Edge Computing (EC), i.e., an automatic 
system analysis shown in Fig. 1(b), to achieve the 
desired requirements. 
 
Related Work 

Increased automation, production flexibility, quick 
response to consumer needs, and enhanced quality are 
significant ways to increase the textile industry's 
profitability. The related work of FDD in this section 
is based on traditional, model-based, and learning-
based approaches, which have been extensively used 
in current years and have attained results in different 
industrial areas. 

A unique plan, Fabric Defects Analysis System 
(FDAS), has been proposed for defect classification in 
woven textiles based on visually measurable defects 
and does not require prior knowledge.7 The approach 
central spatial frequency spectrum is presented to 
increase the analysis process efficiency and detect 
structural defects in fabrics.8 A successful automated 
fabric inspection system in fabrics is proposed for 
multi-class defect detection and fabric classification, 
with the information of geometrics and texture to 
capture visual attributes.9 The study proposes using 
the Curvelet Transform (CT) and Gray Level Coevent 
Matrices (GLCM) to distinguish essential edges from 
the noise and find latent texture defects.10 This is a 
novel method for detecting faults in fabric images that 

combines CT and GLCM.11 These methods provide a 
valid descriptive basis of fault textures from diverse 
images, and in addition, the algorithms are very 
resistant. 

Several components of the manufacturing lifecycle, 
including model, plan, assessment, making, process, 
and maintenance, have been thoroughly examined 
using learning-based methodologies.12 DST-PCA is a 
new feature extraction method for detecting knitting 
fabric faults such as holes, gouts, needle damages, and 
press-off.13 The features are retrieved using the 
Discrete Shearlet Transform (DST) and then 
optimized for a three-layer ANN using Principal 
Component Analysis (PCA). A visual saliency–based 
defect identification technique was described to detect 
fabric flaws in textured and non-textured images. The 
approach extracts histogram features from Context-
Aware (CA) saliency maps, subsequently input into 
an SVM for categorization.14 The FDD technique 
MSCDAE, based on multi-scale convolutional 
denoising auto-encoder networks, uses the residual 
reconstruction maps provided by the CDAE networks 
to highlight problematic regions, increasing the 
model's robustness.15 

Smart manufacturing relies on computational 
intelligence to provide compact visions for better 
decision-making during manufacturing cycles and 
product quality checks.16 Because of their ability to 
automatically extract characteristics from raw data 
and recognize them, CNNs have recently grown in 
popularity and play a key role in intelligent 
manufacturing for image analysis.17,18 The viability of 
utilizing Deep Convolutional Neural Network 
(DCNN) models like VGGNet, DetectNet, and 
GoogLeNetto to detect flaws in fabric has been 
established with the highest F1-score (> 0.95).19–25 

Using a fabric fault detection approach based on 
the CenterNet,  the feature map is extracted using a 
modified ResNet50 network with three separate 
convolutional layers as the object as a point with 
classification information, center offset, and the box 
size is determined. The Soft-NMS is used after 
prediction to improve detection accuracy.22 An 
unsupervised learning strategy is established on the 
Self-Feature Comparison (SFC) to detect and segment 
fabric texture images accurately locate anomalies. The 
SFD and the Self-feature Reconstruction Module 
(SRM) modules are part of the SFC architecture. 
Faults were found using a collective anomaly score 
centered on feature reconstruction and distillation.23 

 
 

Fig. 1 — Defect detection system (a) Human vision analysis
(b) Automatic system analysis 
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Even if deep learning methods are more efficient 
than standard methods, the deployment of their 
systems frequently needs a significant amount of 
processing power. When computational resources are 
uncommon, the system's detection performance 
undergoes significantly. Most contemporary DL 
algorithms are paired with cloud computing to address 
this issue. However, data jams induced by the 
transmission of large amounts of data (such as images 
and videos) would significantly impact production 
efficiency in this cloud-centric approach.24 The DL 
and edge computing are combined to solve the 
challenge. Open platform edge computing integrates 
data processing, storage, system, and application core 
activities while bringing computational and storage 
capabilities closer to customers or data sources.25 

An edge computing approach has been proposed to 
detect fabric defects in the manufacturing industry with 
a minimum response, power, and easy upgradeability. 
The approach response time is 2.5 times greater than the 
cloud computing-based detection method.26 Data 
improvement methodologies are proposed, along with 
the cross-entropy loss functions, to increase the model 
capacity for forecasting. To detect the defects in a real-
time scenario, a modified CNN model with edge 
computing achieves good energy efficiency, a low 
response time, and high scalability.27 The latency and 
power consumption issues were addressed better with 
the scalable and lightweight MobileNetV2 algorithm 
and NVIDIA Jetson TX2. 
 

Materials and Methods 
 

Data Set 
The proposed method was evaluated on four fabric 

defect datasets, i.e., Aliyun-FD-10500(28), TILDA 
textile29 (https://lmb.informatik.uni-freiburg.de/ 
resources/datasets/tilda.en.html), DHU-FD-500, and 
DHU-FD-1000.(30) The Aliyun-FD-10500 is gathered 
from the publicly available fabric defect classification, 
i.e., TianChi Competition, TILDA, fashioned by a 
workspace on texture analysis of Deutsche 
Forschungsgemeinschaft Germany. The DHU fabric 
defect datasets are gathered from Donghua University 
(DHU), and each dataset has different classes of fabric 
defects.28–30 DHU has 10 class labels like normal, broken 
pick, slub, double flat, sundries, broken-end, mis-pick, 
felter, oil-stains, and drawback with 500 and 1000 
different images of size 224 × 224, as shown in Fig. 2. 

The Tilda dataset has 3200 images of 768 × 512 
pixels with eight class labels such as oil stains, broken 

end, holes, missing weft, slack end, ripped, cut 
selvage, kink, and normal. An instance of defects and 
texture base is depicted in Fig. 3.  

In Aliyun-FD-10500, the images are 10500 with 
seven class labels, i.e., stain, broken end, hole, felter, 
crack, broken picks, and normal 224 × 224 image 
size. The dataset description is shown in Table 1. 

 
Proposed Method 

With the features of the DL model and EC 
platform, an automatic FDD system meets the 
requirements of an industry. In this, we proposed the 
framework of an automated and intelligent model 
with edge computing for FDD, shown in Fig. 4 which 
achieves specific characteristics with more benefits. 
The computerized system has improved operational 
efficiency and defect detection with the real-time 
quick response production line. The detection system 
must have the scale feature for the manufacturing line 
to be easily upgraded for future efficiency. Also, the 
production line should have low power usage for 
lower production costs. We use the MobileNetV2 
architecture and an edge computing detection system 
to respond to the specific requirements above. 
MobileNetV2 presents a highly successful mobile-
oriented model that may be utilized on the cross-
establishment for various visual recognition 
applications. MobileNetV2 offers a highly productive 

 
 

Fig. 2 — DHU-FD-500/1000 defective sample images:
(a) Normal, (b) Mispick, (c) Broken picks, (d) Double flat,
(e) Slub, (f) Felter, (g) Draw-back, (h) Sundries, (i) Broken end,
(j) Oil stains  
 

 

Fig. 3 — Defective images of the TILDA dataset (a) hole, (b) oil
strain, (c) slackened, (d) dark wire 
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mobile-oriented model that can serve as the basis for 
various optical recognition applications. 

The Edge device installation with the DL model can 
effectively reduce the production line power usage, 
system response time, and the industry's production 
investment. A lightweight network model, 
MobileNetV2, extracts the features with liner 
bottlenecks and inverted residuals for better detection 
speed. Similarly, the edge device computes the tasks 
from cloud to edge, improves the detection speed, and 
preserves data privacy in the manufacturing production.  
 
Data Preprocessing and Augmentation 

Poor lighting, excessive noise, and broad rotation 
angle commonly influence fabric data collected in 
complex industries. They can significantly affect the 
recognition accuracy of a model trained with the data. 
The dataset must be handled with caution to obtain a 
robust model. Appropriate preprocessing processes 
are required to improve prediction accuracy and 
reduce the total execution delay. As shown in Fig. 5, a 
range of feature selection methods (i.e., flipping, 
rotating, scaling, brightness conversion, contrast 
adjustment, and mosaic) can be coupled to maximize 
the number of training images. In addition, when the 
created images closely resemble their natural 
versions, these data augmentation techniques can 
increase the input image diversity, enhancing the 
trained model. 

We enhanced the training datasets with brightness 
increase, blurring, flipping, random cropping, and 
noise to improve the model robustness in the real-
world manufacturing environment. We tested the 
model on four fabric datasets for detection, where the 
flip transformation uses to increase the data size and 
refine the quality of the model. The approach random 
crop simulated the sample obtained from several 
camera views. Brightness increase is a lighting effect 
used to generate a range of different lighting effects, 
and finally, the model's durability improved by adding 
noise and blur. 
 
MobileNetV2 Architecture 

MobileNets are low-power, low-latency models 
that meet various resource constraints of different use 

Table 1 — Data-set Description  
the first one is TILDA which is created by a workshop on texture analysis of Deutsche Forschungsgemeinschaft German  

the first one is TILDA which is created by a workshop on texture analysis of Deutsche Forschungsgemeinschaft Germany TILDA which 
is created by a workshop on texture analysis of Deutsche Forschungsgemeinschaft Germany 

Dataset Name Samples Size Number of Class Labels Data Source 
Aliyun-FD-10500 10500 7 (stain, broken end, hole, felter, crack, 

broken picks, and normal) 
TianChi competition 

TILDA textile 3200 8(oil stains, broken end, holes, missing 
weft, slack end, ripped, cut selvage, kink 
and normal) 

TechnischeUniversitt Hamburg 

DHU-FD-500 500 10 (normal, broken picks, slub, double 
flat, sundries, broken-end, mispick, felter, 
oil-stains and drawback) 

Donghua University (DHU) 

DHU-FD-1000 1000 10 (normal, broken picks, slub, double 
flat, sundries, broken-end, mispick, felter, 
oil-stains and drawback) 

Donghua University (DHU) 

    

 
 

Fig. 4 — The framework of the proposed model 

 

Fig. 5—Data Augmentation Techniques: (a) Original,
(b) Horizontal Flip, (c) Vertical Flip, (d) Scale up, (e) Rotate,
(f) Gamma Contrast, (g) Change brightness, (h) Mosaic 
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cases. It significantly improves performance of the 
state-of-the-art model, a wide range of functions and 
performance metrics. It is also a powerful feature 
extractor for detecting and segmenting objects.  

MobileNetV2 uses depth-wise separable 
convolution, resulting in a lower computational cost 
than standard convolutions with only a minor loss in 
accuracy. A bottleneck depth-separable convolution 
with residuals is the fundamental building block of 
MobileNetV2. It is optimized for resource-
constrained applications such as edge devices, 
reducing the number of operations and memory 
requirements while maintaining accuracy. The 
architecture includes 32 filters of the first convolution 
layer, subsequent with the residual bottleneck layers 
of 19. The MobileNetV2 is designed using inverted 
residuals and linear bottleneck units.31 For non-
linearity, ReLU6 is used, and considering its 
robustness when used with 3 × 3 kernel size, low-
precision computation, dropout, and batch 
normalization during training. It gets a low-
dimensional compressed input for representation and 
enlarges to a high-dimensional before filtering it with 
a depth-wise convolution. 

Recommender Systems, Natural language 
processing, video and image analysis, and other 
applications use deep learning. The DL models must 
meet strict throughput and latency limitations in 
safety-critical applications like automotive. Also, with 
more deep learning applications in production, the 
demand for performance and accuracy has led to huge 
model sizes and complexity. Initially, the model was 
trained on the workspace and shifted to the NVIDIA 
Jetson TX2 edge device. To optimize and accelerate 
the model, we use TensorRT to improve the detection 
speed and find the system delayed response time to 
ensure that the proposed approach is feasible. 
TensorRT is a DL deployment tool used in various 
circumstances. It supports all main frameworks and 
quickly analyses large amounts of data with advanced 
optimizations, reduced precision, and efficient 
memory utilization. 
 
Transfer Learning 

Transfer learning is a method for performing tasks 
like image classification, and natural language 
processing using feature representations from a model 
that has already been trained. Transfer learning is 
frequently used when the dataset is too large to train a 
model from end to end. The pre-trained models are 
continuously trained on massive datasets, a standard 

benchmark in computer vision. Numerous computer 
vision applications can use the weights that the model 
generates. These models can be used to directly 
forecast outcomes for novel tasks or as a component 
in training a new model. When pre-trained models are 
used in a new model, the training time and 
generalization error are reduced. 

Fine-tuning is a stage in transfer learning used to 
improve the model's performance. When validating 
the model to obtain the final outputs during fine-
tuning, the parameters of a trained model are fine-
tuned and tailored to fit precisely. To retrain the 
model or a subset, use a low learning rate and avoid 
overfitting. 
 
Results and Discussion 

This section will conduct experiments to see how 
well the proposed method works. All tests were 
performed on a DELL Power Edge R740 Server 
equipped with an Intel Xeon Gold 6226R-2.9G 
processor, 128 GB of RAM, and an NVIDIA Quadro 
RTX8000 GPU with 48GB of GDDR6 memory. The 
Implementation was done using the Ubuntu operating 
system and the DL PyTorch framework. The Jetson 
Nano-kit, the most power-efficient embedded and 
fastest AI computer device, was used for all edge 
research.  

Considering small datasets, we applied different 
image transformation techniques, such as data 
augmentation, to improve model generalization 
accuracy. The suggested method uses MobileNetV2 
as the base model and applies transfer learning with 
fine-tuning hyperparameters. Each dataset is 
distributed into training and testing with a proportion 
of 90% and 10%, respectively. All four data-set 
images are resized into 224 × 224 and fed the input of 
the MobileNet. The image scale transformation is 
done randomly from 100% to 150%. Rotation with a 
random of 0 to 45 degrees, flip with 25% and shear 
with a random of 0 to 30°, shown in Table 2. The 
dataset is batch normalized with a batch size of 32 
images. The Table 3 depicts the parameters used for 
experimentation to fine-tune the model, assessing 

Table 2 — Image transformations used for data-set augmentation 

Parameters Value 

Scale Random between 100 and 150% 
Rotation Random between 0 and 450 
Horizontal flip Random 25% 
Vertical flip Random 25% 
Shear Random between 0 and 30° 
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different learning rates from 0.01 to 0.0001 and batch 
sizes from 16 to 64 and 25 to 100 epochs. After 
extensive experiments, the number of epochs is 50, 
0.001 is the learning rate, and 32 batch size was 
determined.  

Evaluation Metrics 
Calculating Recall, Precision, Accuracy, and  

F1-Score based on the Confusion matrix is a generic 
objective technique to approve the algorithm 
performance for classification. The TP, and TN are 
used to describe truly defective and defect-less, 
respectively. Similarly, FP and FN provide 
description of false positive and false negative. The 

metric precision is computed as while the 

corresponding Recall is calculated as . Further, 

the other significant metric is the accuracy which is 
given by 
 

  
 
Similarly, the F1-Score is a harmonic mean 

between precision and recall and is given as 
 

 
2 (precision × reacall)

precision + recall
 

 
The first experiment uses DHU-FD-500 and DHU-

FD-1000 data-sets, giving a test accuracy of 97.76%. 
The training accuracy reaches 98.21%, as shown in 
Fig. 6(a). The second experiment used the Aliyun-FD-
10500 dataset, producing the test accuracy of the 
model at 96.87% and the training accuracy at 98.25%, 
as depicted in Fig. 6(b). The third experiment uses the 
TILDA textile data-set to generate 95.6% training 
accuracy and 94.94% testing accuracy, as shown in 
Fig. 6(c). Complete experiment results and the 
classification report are shown in Table 4. 
 
Conclusions 

With edge computing, this work provides a 
lightweight MobileNetV2-based Transfer Learning 
model to detect defect in fabrics with low power 
consumption, low latency, better efficiency, easy 
upgrading, and an automatic visual inspection system. 
The image transformation techniques were performed 
as data augmentation on four fabric datasets for the 

Table 3 — Training and Testing phase parameters 

Parameters Value 

Batch Size 32 
Learning rate 0.001 
Loss Cross Entropy 
Optimizer SGD 
Activation function ReLU6 
Epochs 50 
Alpha 1.0 

 

 
 

Fig. 6 — Data-set Model accuracy: (a) DHU-FD, (b) Aliyun-FD, 
(c) TILDA textile 

Table 4 — Classification Report 

Data-set Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

Aliyun-FD-10500 96.87 96.87 97.04 96.87 
TILDA textile 94.94 94.94 95.39 94.94 
DHU-FD-500 and 
DHU-FD-1000 

97.76 97.76 97.82 97.76 

Average 96.52 96.52 96.75 96.52 
 



J SCI IND RES VOL 82 JANUARY 2023 
 
 

134

model's adaptability in various fabric materials. 
Transfer learning is used to fine-tune the 
MobileNetV2 hyperparameters resulting in a 
lightweight, versatile, and scalable model, making it 
ideal for resource-constrained edge devices. Finally, 
to make detection faster, the learned model to the 
NVIDIA Jetson Nano-kit edge device is deployed. To 
conclude, the trained network model is both quick and 
accurate when it comes to detection and improves 
fabric production efficiency in textile industries. 
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