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Surface defect identification is essential for maintaining and improving the quality of industrial products. However, 
numerous environmental factors, including reflection, radiance, light, and material, affect the defect detection process, 
considerably increasing the difficulty of detecting surface defects. Deep Learning, a part of Artificial intelligence, can 
detect surface defects in the industrial sector. However, conventional deep learning techniques are heavy in terms of 
expensive GPU requirements to support massive computations during the defect detection process.CondenseNetV2, a 
Lightweight CNN-based model, which performs well on microscopic defect inspection, and can be operated on low-
frequency edge devices, was proposed in this research. It provides sufficient feature extractions with little computational 
overhead by reusing a set of the existing Sparse Feature Reactivation module. The training data are subjected to data 
augmentation techniques, and the hyper-parameters of the proposed model are fine-tuned with transfer learning. The model 
was tested extensively with two real datasets while running on an edge device (NVIDIA Jetson Xavier Nx SOM). The 
experiment results confirm that the projected model can efficiently detect the faults in the real-world environment while 
reliably and robustly diagnosing them. 
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Introduction 
Industry 4.0 automated the manufacturing 

processes by providing customizable and adaptive 
mass production technology to the industries.1 
Industry 4.0 includes several technologies, including 
cloud computing2, big data and analytics3, Internet of 
Things4, artificial intelligence & machine learning5,6, 
and automation7 (such as intelligent robots in product 
assembly lines). The quality of manufactured goods is 
very readily impacted during the industrial production 
process because of the short comings and constraints 
of working conditions, current technology, and other 
factors. Traditional industrial techniques are being 
replaced by new strategies based on artificial 
intelligence to make decisions on their own, work 
independently, and also for continuous learning.8 
Delivering products with high quality are most 
important in manufacturing industries. The most 
prominent issue which affects the rate is surface 
defects in the product. So, product surface defect 

detection9 is required to guarantee the qualification 
ratio and reliable quality. 

Surface defect detection denotes the discovery of 
faults, color contamination, external body, holes, 
scratches, etc., on the sample surface to be verified to 
gather a variety of essential data, such as the contour, 
category, size, and surface defects location to be 
tested.10 Surface defect inspection is often done 
manually, which is very subjective, time-consuming, 
and unable to satisfy the demands of real-time 
detection. Automated surface detection approaches 
can be used to supplement or take the place of human 
judgment to overcome the limitations of manual 
examination. Modern technologies are used in surface 
defect identification research, including ultrasonic 
inspection, machine learning, and deep learning.11 

Deep learning has recently shown exceptional 
performance in various image-based applications, 
such as defect/medical diagnosis12, facial detection, 
object detection13 and classification14, pattern 
recognition and many more. As a result, the detection 
of surface defects is made possible using deep 
learning technology, but their application in particular 
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industries is only in the progression stage. Minor 
surface defects throughout the manufacturing process 
could result in many recalled products, seriously 
affecting the industry's reputation and company sales. 
An automatic surface defect detection system can be 
employed to meet the demands of the manufacturing 
sector, such as low latency response, storage, and high 
accuracy. Since edge computing offers several 
advantages, it is helpful for manufacturing industries. It 
is a sort of decentralized processing that allows data to 
be handled directly by the device that generated it or a 
local server.  

The proposed work suggests a casting fault 
detection technique based on edge computing to 
satisfy industry demands. Practical approaches, like 
data augmentation, are adopted to make the model 
more adaptable and fine-tune. CondenseNetV2's 
hyper-parameters are fine-tuned with transfer 
learning. Finally, the trained model was deployed to 
the NVIDIA Jetson Xavier Nx SOM as an edge 
device to speed up detection. 
 
Literature Review  

Numerous recent research initiatives have been 
taken to suggest intelligent machine vision algorithms 
for evaluating defective goods. These systems would 
use a variety of deep learning algorithms to benefit 
from the data produced by various integrated 
technologies into contemporary industrial processes. 
A list of some notable achievements in this area is 
provided below: 

An innovative and lightweight detection technique 
based on the attention mechanism is proposed by 
Zhuxi et al.15, focusing on using aluminum strip 
defect inspection in industries. The YOLO- DCSAM 
backbone network is built using the YOLOv4 
architecture and is designed with a parallel dual-
channel attention module and depth-wise separable 
convolution. It reduces the network scale and 
improves how the various channels affect the feature 
map. The neck network is also rebuilt and made 
lighter for feature blending, which broadens the 
network's receptive field and streamlines using the 
SPPM-PANet segment. Additionally, improvements 
to the cluster's loss function and anchor box size boost 
the model's applicability to defective items. 

Wan et al.16 offers an upgraded YOLOv5-based 
detection method. First, the network layer in the 
backbone network is extended, and the attention 
mechanism is added. Then, by including a small-scale 
detection layer, the model is amplified from a three-

output forecast layer to a four-output estimation layer. 
Thirdly, network feature fusion has been enhanced by 
the neck network. Lastly, depth-wise separable 
convolution is used in place of the original 
convolution to create a light weight ceramic tile 
recognition system. 

Surface imperfections that appear overtime or as a 
result of incidents like collisions with flying debris 
can significantly reduce the strength of glass. The 
count and dimension of scratches are to be counted to 
determine whether the glass components will shatter 
throughout their lifespan. Zhufeng, et al.17 developed 
a pixel-level instance segmentation approach utilizing 
a region-based convolution neural network with a 
mask to recognize scratches on transparent glass 
surfaces. 

The machine vision inspection system powered by 
artificial intelligence is best suited for examining the 
degree of defects in bottle quality. Sahoo et al.18 
proposed a dynamic bottle inspection framework 
using segmentation techniques. The bottle image was 
separated from the background of the picture. The 
predicted adaptive characteristics were then used to 
create a dataset using mathematical methods such as 
the wavelet transform, Principal Component Analysis 
(PCA), and the average gray scale two-dimensional 
feature vector. An artificial neural network trained by 
back propagation, differential evaluation, and support 
vector machine algorithms is employed to categorize 
the images. 

Ren et al.19 projected a general method with a small 
training dataset. This approach is associated with 
building a classifier employing the characteristics of 
image patches extracted from a trained deep learning 
network. The trained classifier is then convolved to 
create pixel-wise prediction across the input. The 
experiment uses three open datasets and one industry 
dataset. The investigation entails two tasks: Fault 
segmentation, and Image classification. 

Liu et al.20 presented a framework for detecting the 
defects on the surface of the steel strip 
by incorporating a self-attention mechanism to 
mitigate the detrimental effects of information 
redundancy and improve feature discrimination. The 
authors developed a model that can recognize the 
same class and the position of six types of typical 
surface flaws on steel strips when performing the 
defect detection task. The self-attention mechanisms 
effectively capture spatially semantic linkages among 
the given two positions of the feature maps, and 
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global contextual interdependencies. The suggested 
framework has more excellent localization 
capabilities and improved detection accuracy 
compared to Faster R-CNN with FPN. 

Jiang et al.21 present a coaxial bright-field and a 
low-angle bright-field imaging system. Images with a 
resolution of 16,000 × 8092 are acquired employing 
8K line-scan complementary metal oxide 
semiconductor cameras. When there are weak 
scratches and coloration issues, the coaxial bright-
field method is used; however, when there is a dent 
issue, the Flow-angle bright-field imaging system is 
used. Based on U-net, a proposed symmetric 
convolution neural network with encoder and decoder 
architecture generates semantic segmentation similar 
to the source image. In the glass surface defect 
collection, more than 30,000 faulty and non-defective 
photos were manually annotated from more than 
10,000 source photographs. The authors claimed that 
the results confirmed the experimental findings, 
which revealed that the average recall rate and 
precision exceeded 95%.  

Jingwen et al.22 presented a CNN-based network 
approach with two parts. The designed network 
consists of two parts feature extractor and classifier. 
The authors use a portion of the pre-trained network 
VGG16 as a feature extractor, and the authors defined 
CNN as a classifier to identify the defects on the 
surface of the steel strips. The classifier works 
efficiently based on the feature maps formed by the 
feature extractor of the designed network. An optical 
inspection platform that combines parallel image 
processing with a high-resolution optomechanical 
module has been proposed to analyze touch panel 
glass for faults. Parallel image processing on a 
combination of CPU and GPU platforms was used to 
examine the key characteristics of the glass surface. 

After examination, a high rate of surface scratch 
detection on the touch panel glass was achieved with a 
minimal defect size. 
 

Proposed Methodology 
Intelligent machine vision systems help to assure 

excellent quality before a product is delivered to the 
user by enabling early error detection in the production 
line. However, while creating exemplary machine 
vision architecture for defective product inspection, it 
is essential to consider the various technologies used in 
the production process, starting with the raw material 
to the finished product. Leveraging all the data 
produced throughout the production process is also 
essential to improve the system and find the primary 
reasons for failures to enhance product quality. The 
architecture of the proposed methodology with edge 
devices is shown in Fig. 1. 

The architecture starts with surface images of the 
products as the input. Data augmentation allows the 
process to detect defects in the products irrespective 
of the orientation of the product. As part of data 
processing, augmentation is applied to the dataset to 
increase the size and the images from different angles. 
After the augmentation, the dataset is separated into 
training and testing data. Training data is given to 
lightweight CondenseNet-V2 to retrain the transfer 
learning network. The trained model is subjected to 
the evaluation, in which the model is validated and 
tested with test data. The validated model is then 
deployed into edge computing devices that detect the 
defect on the product surfaces. The recognized label is 
the final output of the proposed architecture. 
 

CondenseNet 
Innovative and effective convolutional network 

architectures called CondenseNet improve the 
parameter and Floating-Point Computation 

 
 

Fig. 1 — A flow process model of proposed methodology with edge device 
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Performance of DenseNet (FLOPs). CondenseNet was 
proposed as a DenseNet based method for 
automatically learning a good connectivity pattern.23 
The authors develop a brand-new essential building 
block known as Learned Group Convolution by 
segmenting the filters of the bottleneck layer into 
multiple groups and gradually erasing less crucial 
features throughout the training, as shown in Fig. 2. 
CondenseNet's main distinguishing feature is its ability 
to transform the final pre-trained model in to typical 
group convolutions, accelerating deployment. 

Deep networks with dense connectivity can achieve 
high computational efficiency by reusing features 
depicted in Fig 3. A method called sparse feature 
activation is utilized to actively increase the relevance 
of features for reuse. The technique can be further 
enhanced if redundant characteristics are eliminated, as 
demonstrated by the CondenseNet. CondenseNetV2 is 
the network here each layer is capable of learning to 1) 
selectively reuse a subset of the essential features from 
earlier levels and 2) actively update a subset of those 
features to make them more relevant for forthcoming 
layers. 
 
Transfer Learning 

Transfer learning is a technique for performing 
image classification tasks using a trained model's 
feature representations. Transfer learning is typically 
used when the data set is too large to start from 
scratch and to train a complete model. Large datasets 
are generally used to train pre-trained models, which 
is a common practice in the arena of computer vision. 
Different computer vision applications can use the 
weights that the models determine. These models can 
be used to train new models or to apply straight to 
new task predictions. When pre-trained models are 

merged into new models, the training time and 
generalization error are reduced. A transfer learning 
phase with fine-tuning parameters increases the 
model's functionality. While validating the model to 
provide the desired outputs during fine-tuning, the 
parameters of a trained model are adjusted and 
tailored to fit precisely. When retraining the model or 
a subset, use a low learning rate and stay away from 
over-fitting. 
 

Results and Discussion 
 

Dataset 
Identifying surface defects on industrial products 

currently needs a significant and coherent dataset. The 
foundation for the research is the dataset. A good 
dataset make site as easier to find problems and 
summarize them to create solutions. This section 
classifies the standard industrial datasets based on the 
different objects and application scenarios. Two 
datasets are considered to assess the effectiveness of 
the planned methodology. 

The surface of the Ball Screw Drives Dataset24 

contains 21835 images in the .png format. The 
classification for each image is "P, N," where P 
intends for pitting (also known as pitting(s)), which 
are surface failures, and N intends for no pitting (No 
Surface failures). The collection comprises 11 075 

 
 

Fig. 2 — Learned Group Convolution 
 

 
 

Fig. 3 — CondenseNet with Fully Dense Connectivity 
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images without surface failure and 10 760 images 
with surface failure. A 20% of the dataset is used for 
validation & testing, and the residual 80% for 
training. 

The NEU surface defect dataset25 contains 1800 
images of the defects on the surface of hot-rolled steel 
strips. It has a total of six kinds of surface defects, 
Crazing (Cr), Patches (Ps), Rolled_in_Scale (Rs), 
Pitted surface (Ps), Inclusion (In), and Scratches (Sc). 
The description of the class labels is as follows: 
Inclusion (One common type of metal surface 
imperfection is inclusion. Some inclusions are pushed 
into the plate while others are loose and easily slide 
off), Crazing (The phenomenon that causes inevitable 
surface cracks in a material is known as crazing), 
Patches (A distinctive feature that distinguishes a 

piece of metal from the rest), Pitted surface (Pitting is 
a type of rust that concentrates on a relatively small 
area of metal surfaces and seeps into the inside of the 
metal. Pitting often has a minor diameter with a deep 
depth), Scratches (An abrasion mark on a surface is 
called a scratch), and Rolled_in_scale (mill scale is 
rolled into the metal during the rolling procedure). 
Every individual class has 300 images; 240 are 
utilized for training and 60 for testing.  

The characteristics of the two datasets in terms of 
training and testing instanced for class label-wise are 
shown in Table 1. Sample images without and with 
defects in the surface of the Ball Screw Drives Dataset 
are shown in Fig. 4 and Fig. 5 respectively. The 
model images of each class in the NEU dataset are 
shown in Fig. 6. 

Table 1 — Characteristics of the Surface defect datasets 

Dataset Class label Instances in Training Instances in Testing Total 

Surface of the Ball Screw Drive 

Surface failure (P) 8608 2152 10760 
No Surface failure (N) 8860 2215 11075 
Total 17468 2215 21835 

NEU Surface Defect dataset 

Crazing (Cr) 240 60 300 
Patches (Ps) 240 60 300 
Rolled_in_Scale (Rs) 240 60 300 
Pitted_surface (Ps) 240 60 300 
Inclusion (In) 240 60 300 
Scratches (Sc) 240 60 300 
Total 1440 360 1800 

 

 
 

Fig. 4 — Sample of images without Surface failure 
 

 
 

Fig. 5 — Sample of images with Surface failure 
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Experimental Environment 
We conduct a series of experiments using two real 

datasets. This experiment is performed on the DELL 
Power Edge Server, and the system hardware 
configuration is shown in Table 2. The computer 
software configuration includes the Ubuntu operating 
system and the PyTorch deep learning framework. 
 
Performance Evaluation 

Standard performance measures, including 
accuracy, recall, precision, and F1-score, are 
considered to evaluate the developed models. The 
equations for precision, recall, and F1- score and 
accuracy are specified in Eqs (1) through (4), 
respectively. Precision estimates the percentage of 
detections that contain defects, whereas recall 
indicates the ratio of defects that are identified. The 
harmonic mean of recall and precision is the F1-score, 
which illustrates the trade-off between the two- 
component metrics. Images with defects belong to the 
positive class, whereas those without defects belong 
to the negative class. The formulas of evaluated 
measures are shown in Eqs (1–4). 
 

𝑃𝑒𝑐𝑖𝑠𝑖𝑜𝑛   … (1) 
 

𝑅𝑒𝑐𝑎𝑙𝑙   … (2) 
 

𝐹1 2
  

  
 … (3) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  
  

      
 … (4) 

 

The notations TN, TP, FN, and FP, stand for the 
number of true positives, false positives, and false 
negatives, respectively. 

We examined the pre-trained model and used  
the fine-tuning technique on the surface of the  
Ball Screw Drives Dataset. When using n pre-train 
weights as initial network weights for the dataset,  
the full CondenseNetV2 model can be trained and 
achieve an accuracy of 98.08%, and the classification 
results are shown in Table 3. However, for the NEU 
Surface defect dataset, the proposed model retrains 

some layers of the model while leaving others  
frozen in training. The experiment exhibits 93.33% 
accuracy, with the trainable of the last four levels  
and the first eight layers being frozen. The 
classification outcomes of the NEU Surface defect 
dataset are shown for each type of defect in Table 3. 
The results of the projected method are compared 
with the standard CNN-based model. The standard 
CNN model achieved 96.46% accuracy; while the 
proposed method performed 98.08% on the Ball 
screw drives dataset. The standard CNN model gained 
90.59% accuracy with the NEU dataset, and the 
proposed model got 93.33% accuracy for surface 
defects detection.  
 
Conclusions 

Surface defect detection is essential for intelligent 
production. Nowadays, most industrial product 
surface defects are manually inspected, which is  
time-consuming, expensive due to high labor 
expenses, and error-prone. Therefore, research on 

 
 

Fig. 6 — NEU dataset-six classes of surface defects sample images 
 

Table 2 — System hardware configuration 

Hardware Product Specification 

CPU 2 × Intel Xeon Gold6226R-2.9G 
GPU NVIDIA QuadroRTX6000, 24GB GDDR6 
RAM 2 × 64GB RDIMM 
Edge Device NVIDIA Jetson Xavier Nx SOM 
 

Table 3 — Classification results of ball screw drives and NEU 
surface defect dataset 

Dataset Class Label Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

Accuracy 
(%) 

Ball Screw 
Drives  
Dataset 

Surface failure 
(P) 

98 99 98 
98.08 

No Surface 
failure (N) 

99 98 98 

NEU  
Surface  
Defect  
dataset 

Crazing (Cr) 93 93 93 

93.33 

Inclusion (In) 95 95 95 
Patches (Ps) 97 97 97 
Pitted_surface 
(Ps) 

92 92 92 

Rolled in scale 
(Rs) 

93 93 93 

Scratches (Sc) 90 90 90 
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industrial product surface defect identification has 
significant practical implications. The proposed 
method has an autonomous visual inspection 
mechanism, lower power consumption, lower  
latency, more efficiency, and easy upgradeability.  
The usage of image processing methods as data 
augmentation boosted the surface fault dataset's 
adaptability. A lightweight Condense NetV2-based 
transfer learning model for defect identification 
deployed on the NVIDIA Jetson Xavier Nx SOM 
edge device to accelerate the detection process. The 
experiment proved that the proposed methodology 
achieved good results compared to the standard 
Convolutional Neural Network. The trained 
condenseNetV2 model improves surface defect 
detection efficiency in industries and is quick  
and accurate at defect detection and in future it  
can be extended to detect the surface defects  
of the products manufactured with different materials 
not only metal.  
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