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Today’s digital world computations are extremely difficult and always demands essential requirements to significantly 
process and store an enormous size of datasets. Therefore, this is mostly structured, semi-structured and unstructured 
generated data with more velocity at beyond the limits and double day by day from a wide variety of applications. In the last 
decade, many organizations have been facing major problems in handling and processing massive chunks of data, which 
could not be processed efficiently due to the lack of enhancements on existing technologies. This paper, introduce advanced 
data processing tools to solve the extreme problems as efficiently by using the most recent and world’s primary powerful 
Map-Reduce framework, but it has few data processing issues. Therefore, recently Apache Spark fastest tool has introduced 
to overcome the limitations of Map Reduce. 
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Introduction 
In today’s digital world many organizations 

generate enormous data whose size raises 
exponentially every year.1 Big data become a hot 
topic at present decade, which seems to be of 
enormous size. It has unstructured data to be 
processed by using conventional computational tools 
and methods in efficient, scalable, cost-effective and 
reliable manner2 with the support of apache 
processing tools. Big data distinctly address 
characteristics with six V’s volume, velocity, veracity, 
variety, value, variability and validity. Spark assists to 
simplify the challenging and computationally 
intensive job of treating high quantities of real-time or 
archived data, both structured and unstructured, 
seamlessly combining appropriate complex abilities 
such as machine learning and graph algorithms. Spark 
significantly makes Big data processing to the 
volumes. Nowadays Big data analytics is one of the 
most effective research fields with many objectives 
and requirements for latest variations that influence a 
wide range of industries. To fulfill the computational 
requirements of massive data analysis, a suitable 
framework is necessary to create, perform and 
maintain the needed pipelines and algorithms. In this 

concern, Apache Spark has been raised as a unified 
engine for large-scale data analysis over a diversity of 
workloads. It presents a novel method for data science 
and engineering where wide ranges of data problems 
can be solved using a single processing engine with 
general-purpose languages.  
 
Materials, Methods and Results  

Apache Spark has been adopted as a fast and 
scalable framework in both academia and industry 
because of its advantage in advanced programming 
model. For an overview, comparison of features 
between Map Reduce and Spark is given in Table 1. It 
has become the most active big data open source 
project and one of the most active projects in the 
Apache Software Foundation. Separate testing 
operation regarding file reading computation with 
CERN storage system based on a dedicated testing 
cluster is given in Table 2. Apache Spark access and 
copying of special file formats is given in Table 3. 
 

Map reduce 
Google has introduced an early and latest digital 

world framework to significantly solve existing 
technology difficulties by Map-Reduce which is 
simple, open source, more distributed and parallely 
processing incredible volumes of world data on a 
large commodity cluster regarding reliability, high 
fault tolerance, great scalability and in more reliable 
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manner. In December 2004, Google issued a journal 
on Map Reduce. The great benefit of Map Reduce is 
that multiple computer nodes are easy to modify data 
processing. Map Reduce perform two different tasks, 
Map and Reduce, which takes place entirely after the 
completion of the mapped phase. The map task, 
which is actually reading and quickly process a data 
block at intermediate level outputs for producing key-

value pairs. The reducer receive key-value frame from 
several map jobs, then adds with a smaller group of 
multiples or key-value frames (the final output) by 
means of intermediate datasets (intermediate  
key-value pair) as shown word counting in Fig. 1. 

The total read time is calculated by subtracting the 
total CPU time from the total execution time for 
Cluster test of reading ROOT files from HDFS 
(Hadoop Distributed File System ) and EOS. A total 
of 160 tasks were used (40 executors with 4 cores per 
executor) to analyze 0.5 TB of ROOT files in Apache 
Spark as shown in Fig. 2. 

We illustrated comparison of performing the 
common HEP examination workflow on Apache 
Spark. The two biggest alerts from the primary studies 
were determined by improving the histogram mac 
package to fill histograms in map-reduce way 
technologies and to put ROOT files directly from 
Apache Spark, also from the CERN EOS storage 
system. This eliminated the requirement to transform 
the input data into a structured format that Apache 
Spark follows natively. The execution of the entire 
analysis workflow reading ROOT files is about 2–4 
times slower on EOS than on HDFS (Fig. 3), but 
additional tuning and optimizations are required to 
achieve the gap. The scaling performance outcomes 
are encouraging to examine more extended and more 
extensive input sizes and get the purpose to make 
interactive analysis on very huge datasets. 

Table 1 — Feature Comparison between Map Reduce and Spark 

 Hadoop Map 
Reduce 

Spark 

Processing Batch Micro Batch, Stream 
Speed Slow Faster than MR 
Operators NA Time-based  
Windows   No Yes 
Storage data HDFS In-Memory 
Latency High Low 
Fault tolerance High   High , RDD DAG 
Performance Slow High than MR 
Remove  duplicate High  Process records exactly 
Iterative data flow Chain of states Cyclic data flow DAG 
Scalability Incredible up to 

10,000 
High cluster of 8000 

Visualization  Low High,  need RAM 
Recovery  high fault tolerant  RDD DAG 
Abstraction NO Spark RDD Data stream 
Easy to use Difficult Easy 
Real-time analysis No  Good 
Scheduler Fair, capacity Own flow scheduler 
SQL  Hive  SSQL Hive, FDSL 
Catching  Not Yes 
Hardware Commodity h/w Mid to high level h/w 
Machine learning Mahout Mlib 
Line of code 1,20,000 20,000 
Deployment Fully distribute 

mode 
Standalonemesos/YARN 

 

Table 2 — Size of the Files 
Apache Spark 

Data size(250 GB) HDFS  EOS(CERN) 
Text   1 Gbit/s 250 Mbit/s 
PARQUET  700 Mbit/s 6-8 Gbit/s 
ROOT   400 Mbit/s 2.4 Gbit/s 
 

Table 3 — Reading Operation Completion Times 

Apache Spark 

Total Time HDFS  EOS(CERN) 
Running  4 minutes 18 minutes 
Reading  2.7 hours 8.9 hours 
Executing 5.6 hours 10.9 hours 
CPU  2.8 hours 2.9 hours 

 
 

Fig. 1 — Map Reduce word counting 
 

 
 

Fig. 2 — Size of the Files  
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Features of Map Reduce 
Parallel Processing 

Typically, to split each job across several nodes 
through Map Reduce moreover, every part of the job 
node operates parallel and in distributed manner. 
Mostly the Map Reduce working depends on divide 
and conquers strategy, which enables us to manipulate 
data with multiple machines.3 Actually, the time taken 
to process the data is significantly reduced by a 
number of machines in parallel rather than by one 
machine. 
 

Mapper Phase<key one, value one> =list (<key two, 
value two>)                                                               (1) 

 

Reducer phase<key two, list (value two)>=list  
(<key three, value three>)                                         (2) 
 

Fault Tolerance 
Hadoop extremely controls the faults with the help 

of replication factor. Whenever user store a particular 
file in Hadoop storage component HDFS, which 
partitions the file into a number of blocks and 
distribute data blocks over the various machines in 
HDFS cluster.4 In addition, to generate the default 
replica value  of each block is on other cluster 
machines, if one machine in the cluster is failed 
during critical circumstances. Therefore, the user 
could gain data from other machines. 
 

Scalability 
Typically, Hadoop has one of the major strength as 

scalability. Hence, it is very easy to add new nodes 
with no downtime. Hadoop supports horizontal 
scalability. So latest nodes can join on the fly manner 
to the machine. In Apache Hadoop, every application 
can run significantly on more than thousands  
of nodes. 
 

Reliability 
In Hadoop, the whole data become more reliable 

which is stored on the cluster of machines. Regardless 

of machine failure, replication mechanism can support 
to gain the same data from a different place. 
Therefore, if any of the nodes fails, then also we can 
store data more reliably. 
 
High Availability 

Due to the more number of copies of datasets the 
actual data is easily available and accessible even 
though hardware faces failures. Therefore, even if any 
device goes down, our required data could be 
retrieved in one way or the other.  
 
Data locality 

The major limitation of Hadoop is more crossing-
switching system traffic due to processing of the 
enormous quantity of data. Therefore to beat this 
problem, Data Locality came into reality.  Hadoop 
can support to move the computation very closely tied 
with real data, which actually resides on the cluster 
node.5 Therefore, it efficiently decreases network 
congestion and broadens the system throughput. 
 

Major issues on Hadoop 
Today’s digital world computations are mostly 

based on complete real-time orientation but could not 
be process continuously for every aspect in an 
efficient way with Map-Reduce.6 Since the Map 
Reduce process intermediary aspects as it responds to 
each job run in separation, huge data could 
be shuffled across the network. Whenever you require 
handling stream processing with Map Reduce, it is 
highly difficult. Hence, Map Reduce is excellent and 
suitable for batch process on en enormous amounts of 
data. For small files, processing speed is very low, 
high latency, less security, poor real-time stream 
processing, efficiently support up to batch processing 
only, more uncertainty, line of code is complex, no 
mechanism of caching, difficult ease of use, generally 
vulnerable, lack of delta iterations, poor interactive 
processing, lack of in memory and graph processing. 
If it’s programming interface is low, Map Reduce and 
its open source application Hadoop face performance 
and latency problems during the frequently  
rising actual size of the data. Apache Spark is created 
to address the problems and drawbacks of  
Map Reduce. 
 
Spark 

This is world’s fastest general-purpose, more 
distributed, much parallel and completely open-source 
cluster computing model. It is originally developed in 

 
 

Fig. 3 — Completion Times 
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2009 and opened in 2010 as an Apache project in the 
UC Berkeley's AMPLab. This has fairly been since 
lightning fast and in-memory processing. In recent 
year, Hadoop could do Spark tool place and the whole 
world witnessed with implementation of a standard 
examination concerning organization of 100 terabytes 
of data just in 23 minutes - the earlier world proof of 
71 minutes. Developers from Spark conclude that 
when properly processed massive data in memory 
approach it can work effectively, and is lightning 
faster means 100 times faster than Map Reduce also 
10 times faster than disk. Spark simply provides more 
scalability, more fault tolerance, reliability, and 
several other features. Spark and its RDDs did reveal 
in 2012 while the response to weaknesses in the  
Map-Reduce cluster-computing model, which makes 
a selective straight dataflow construction on 
distributed applications. Map Reduce applications 
gather input data during the disk source, then the map 
takes responsibility for the data, degrade the outcome 
of the map task, and store reduce task outcome on 
disk. Spark's RDDs could perform similarly to 
working set to distributed applications, which 
contribute an intentionally reduced pattern of 
distributed oriented shared memory. Apache Spark 
has complete service of an architectural establishment 
with the resilient distributed dataset (RDD), which 
support read-only operation on a number of data items 
circulated across the cluster, and implement in a fault-
tolerant manner.7 

The Data frame API could be generated as a notion 
on top of the RDD. In Apache Spark, the starting 
interface that is especially an application-
programming interface (API) is called the RDD. 
Spark strongly supports memory processing to 
enhance the performance of applications for big data 
analysis, but it could also execute traditional disk-
based treatment whenever data sets are far too large 
for the system memory available. The RDD has 
specifically designed so that customers can cover up a 
great deal of computational complexity. It aggregates 
data and partitions it across a whole server cluster 
where it could be calculated, migrated or simply run 
via an analytical paradigm in another data store.7 
Spark greatly supports the deploying of iterative-
based techniques, which encourage their data set 
various times during a loop service, and especially the 
data analysis with complete interactive manner. Spark 
achieves low latency of those applications, could be 
degraded by various request of dimension compared 

with Apache Hadoop Map Reduce execution. 
Between the sorts of iterative techniques are the train-
based methods for machine learning operations, 
which made the fundamental incentive for improving 
Apache Spark. Apache Spark accomplishes higher 
performance for both batch and streaming 
information, just using a Direct Acyclic Graph like 
state-of-the-art scheduler, optimization of a query, 
and psychical execution tools. 

Apache Spark always needs a cluster based 
administrator and the latest parallel and more 
distributed storage segment. During batch  
control, spark recommends standalone mode, Hadoop 
YARN, or Apache Mesos. During propagated 
accommodation, Spark makes interface among an 
extensive diversity, including Hadoop Distributed File 
System (HDFS), and conventional solutions could be 
executed.8 Apache Spark further establishes a pseudo-
distributed restricted method, normally utilized for 
improvement or examination objectives, where 
disseminated accommodation is not essential but the 
general file operation could be utilized alternately in 
different situations, typically, a single device 
including single executor through one CPU kernel 
operated apache spark.9 
 
Spark libraries 

The Spark Core engine processes mainly provide 
high-level API and actually support a similar set of 
related data-management and analysis tools. In 
addition to spark core, a new package of most popular 
code libraries to be used in data analysis and software 
programs actually comes with an apache spark 
environment. Spark SQL allows users to query stored 
data in different applications in the relevant SQL 
language. Spark streaming can simply build an 
application to evaluate and present information even 
in real-time. MLlib is a device trying to learn code 
library that allows customers to use advanced 
mathematical operations on spark information and 
create new applications for those analyses. GraphX, 
which is mostly a more graph-parallel numerical 
computation online tool, actually built-in library.9 
Spark typically, provides more than 80 operators, 
which simply make parallel applications easy to 
develop. Although from the Scala, Python, R and 
SQL shells then you really could use it interactively. 
Spark is enabled with a pack of libraries, along with 
SQL and Data Frames, MLlib, GraphX, and Spark 
Streaming.10 It streams processing, dynamic in nature, 
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more in-memory computation, reusable, fault tolerant, 
real-time stream processing capable, lazy evaluation 
in apache spark, supports multiple languages, active, 
progressive and expanding spark community, support 
for sophisticated analysis, integrated with Hadoop, 
spark graphsx, and cost-effective.11–14 Spark and 
Hadoop comparison in terms of Throughput and 
latency are illustrated in Figs 4 and 5. 
 

Conclusion 
However, Map Reduce has many limitations, 

which are significantly overcoming by Apache 
latest lightning-fast stream processing framework is 
a spark. The latest spark framework was finding to 
be simple, more accurate, precise, specific, 
reproducible, low latency, more throughput, fault-
tolerant, fastest batch and stream processing. 
Apache spark is a flexible procedure and reduces 
the drawbacks of Map Reduce. 
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Fig. 4 — High Throughput of Spark 
 

 
 

Fig. 5 — Low Latency of Spark 


