

Journal of Scientific & Industrial Research
Vol. 79, July 2020, pp. 631-635

Processing Real World Datasets using Big Data Hadoop Tools

N Deshai1*, B V D S Sekhar1, P V G D Prasad Reddy2 and V V S S S Chakravarthy3

1Department of Information Technology, S R K R Engineering college, Bhimavaram, AP, India
2Department of Computer Science & Systems Engineering, Andhra University, Visakhapatnam, AP, India

3Department of Electronics & Communication Engineering, Raghu Institute of Technology, Visakhapatnam, AP, India

Received 11 April 2019; revised 22 December 2019; accepted 18 April 2020

Today’s digital world computations are extremely difficult and always demands essential requirements to significantly
process and store an enormous size of datasets. Therefore, this is mostly structured, semi-structured and unstructured
generated data with more velocity at beyond the limits and double day by day from a wide variety of applications. In the last
decade, many organizations have been facing major problems in handling and processing massive chunks of data, which
could not be processed efficiently due to the lack of enhancements on existing technologies. This paper, introduce advanced
data processing tools to solve the extreme problems as efficiently by using the most recent and world’s primary powerful
Map-Reduce framework, but it has few data processing issues. Therefore, recently Apache Spark fastest tool has introduced
to overcome the limitations of Map Reduce.

Keywords: Apache Spark, Big Data, Hadoop, Map Reduce

Introduction
In today’s digital world many organizations

generate enormous data whose size raises
exponentially every year.1 Big data become a hot
topic at present decade, which seems to be of
enormous size. It has unstructured data to be
processed by using conventional computational tools
and methods in efficient, scalable, cost-effective and
reliable manner2 with the support of apache
processing tools. Big data distinctly address
characteristics with six V’s volume, velocity, veracity,
variety, value, variability and validity. Spark assists to
simplify the challenging and computationally
intensive job of treating high quantities of real-time or
archived data, both structured and unstructured,
seamlessly combining appropriate complex abilities
such as machine learning and graph algorithms. Spark
significantly makes Big data processing to the
volumes. Nowadays Big data analytics is one of the
most effective research fields with many objectives
and requirements for latest variations that influence a
wide range of industries. To fulfill the computational
requirements of massive data analysis, a suitable
framework is necessary to create, perform and
maintain the needed pipelines and algorithms. In this

concern, Apache Spark has been raised as a unified
engine for large-scale data analysis over a diversity of
workloads. It presents a novel method for data science
and engineering where wide ranges of data problems
can be solved using a single processing engine with
general-purpose languages.

Materials, Methods and Results

Apache Spark has been adopted as a fast and
scalable framework in both academia and industry
because of its advantage in advanced programming
model. For an overview, comparison of features
between Map Reduce and Spark is given in Table 1. It
has become the most active big data open source
project and one of the most active projects in the
Apache Software Foundation. Separate testing
operation regarding file reading computation with
CERN storage system based on a dedicated testing
cluster is given in Table 2. Apache Spark access and
copying of special file formats is given in Table 3.

Map reduce
Google has introduced an early and latest digital

world framework to significantly solve existing
technology difficulties by Map-Reduce which is
simple, open source, more distributed and parallely
processing incredible volumes of world data on a
large commodity cluster regarding reliability, high
fault tolerance, great scalability and in more reliable

——————
*Author for Correspondence
E-mail: desaij4@gmail.com

J SCI IND RES VOL 79 JULY 2020

632

manner. In December 2004, Google issued a journal
on Map Reduce. The great benefit of Map Reduce is
that multiple computer nodes are easy to modify data
processing. Map Reduce perform two different tasks,
Map and Reduce, which takes place entirely after the
completion of the mapped phase. The map task,
which is actually reading and quickly process a data
block at intermediate level outputs for producing key-

value pairs. The reducer receive key-value frame from
several map jobs, then adds with a smaller group of
multiples or key-value frames (the final output) by
means of intermediate datasets (intermediate
key-value pair) as shown word counting in Fig. 1.

The total read time is calculated by subtracting the
total CPU time from the total execution time for
Cluster test of reading ROOT files from HDFS
(Hadoop Distributed File System) and EOS. A total
of 160 tasks were used (40 executors with 4 cores per
executor) to analyze 0.5 TB of ROOT files in Apache
Spark as shown in Fig. 2.

We illustrated comparison of performing the
common HEP examination workflow on Apache
Spark. The two biggest alerts from the primary studies
were determined by improving the histogram mac
package to fill histograms in map-reduce way
technologies and to put ROOT files directly from
Apache Spark, also from the CERN EOS storage
system. This eliminated the requirement to transform
the input data into a structured format that Apache
Spark follows natively. The execution of the entire
analysis workflow reading ROOT files is about 2–4
times slower on EOS than on HDFS (Fig. 3), but
additional tuning and optimizations are required to
achieve the gap. The scaling performance outcomes
are encouraging to examine more extended and more
extensive input sizes and get the purpose to make
interactive analysis on very huge datasets.

Table 1 — Feature Comparison between Map Reduce and Spark

 Hadoop Map
Reduce

Spark

Processing Batch Micro Batch, Stream
Speed Slow Faster than MR
Operators NA Time-based
Windows No Yes
Storage data HDFS In-Memory
Latency High Low
Fault tolerance High High , RDD DAG
Performance Slow High than MR
Remove duplicate High Process records exactly
Iterative data flow Chain of states Cyclic data flow DAG
Scalability Incredible up to

10,000
High cluster of 8000

Visualization Low High, need RAM
Recovery high fault tolerant RDD DAG
Abstraction NO Spark RDD Data stream
Easy to use Difficult Easy
Real-time analysis No Good
Scheduler Fair, capacity Own flow scheduler
SQL Hive SSQL Hive, FDSL
Catching Not Yes
Hardware Commodity h/w Mid to high level h/w
Machine learning Mahout Mlib
Line of code 1,20,000 20,000
Deployment Fully distribute

mode
Standalonemesos/YARN

Table 2 — Size of the Files
Apache Spark

Data size(250 GB) HDFS EOS(CERN)
Text 1 Gbit/s 250 Mbit/s
PARQUET 700 Mbit/s 6-8 Gbit/s
ROOT 400 Mbit/s 2.4 Gbit/s

Table 3 — Reading Operation Completion Times

Apache Spark

Total Time HDFS EOS(CERN)
Running 4 minutes 18 minutes
Reading 2.7 hours 8.9 hours
Executing 5.6 hours 10.9 hours
CPU 2.8 hours 2.9 hours

Fig. 1 — Map Reduce word counting

Fig. 2 — Size of the Files

DESHAI et al.: PROCESSING REAL WORLD DATASETS USING BIG DATA HADOOP TOOLS

633

Features of Map Reduce
Parallel Processing

Typically, to split each job across several nodes
through Map Reduce moreover, every part of the job
node operates parallel and in distributed manner.
Mostly the Map Reduce working depends on divide
and conquers strategy, which enables us to manipulate
data with multiple machines.3 Actually, the time taken
to process the data is significantly reduced by a
number of machines in parallel rather than by one
machine.

Mapper Phase<key one, value one> =list (<key two,
value two>) (1)

Reducer phase<key two, list (value two)>=list
(<key three, value three>) (2)

Fault Tolerance
Hadoop extremely controls the faults with the help

of replication factor. Whenever user store a particular
file in Hadoop storage component HDFS, which
partitions the file into a number of blocks and
distribute data blocks over the various machines in
HDFS cluster.4 In addition, to generate the default
replica value of each block is on other cluster
machines, if one machine in the cluster is failed
during critical circumstances. Therefore, the user
could gain data from other machines.

Scalability
Typically, Hadoop has one of the major strength as

scalability. Hence, it is very easy to add new nodes
with no downtime. Hadoop supports horizontal
scalability. So latest nodes can join on the fly manner
to the machine. In Apache Hadoop, every application
can run significantly on more than thousands
of nodes.

Reliability
In Hadoop, the whole data become more reliable

which is stored on the cluster of machines. Regardless

of machine failure, replication mechanism can support
to gain the same data from a different place.
Therefore, if any of the nodes fails, then also we can
store data more reliably.

High Availability

Due to the more number of copies of datasets the
actual data is easily available and accessible even
though hardware faces failures. Therefore, even if any
device goes down, our required data could be
retrieved in one way or the other.

Data locality

The major limitation of Hadoop is more crossing-
switching system traffic due to processing of the
enormous quantity of data. Therefore to beat this
problem, Data Locality came into reality. Hadoop
can support to move the computation very closely tied
with real data, which actually resides on the cluster
node.5 Therefore, it efficiently decreases network
congestion and broadens the system throughput.

Major issues on Hadoop
Today’s digital world computations are mostly

based on complete real-time orientation but could not
be process continuously for every aspect in an
efficient way with Map-Reduce.6 Since the Map
Reduce process intermediary aspects as it responds to
each job run in separation, huge data could
be shuffled across the network. Whenever you require
handling stream processing with Map Reduce, it is
highly difficult. Hence, Map Reduce is excellent and
suitable for batch process on en enormous amounts of
data. For small files, processing speed is very low,
high latency, less security, poor real-time stream
processing, efficiently support up to batch processing
only, more uncertainty, line of code is complex, no
mechanism of caching, difficult ease of use, generally
vulnerable, lack of delta iterations, poor interactive
processing, lack of in memory and graph processing.
If it’s programming interface is low, Map Reduce and
its open source application Hadoop face performance
and latency problems during the frequently
rising actual size of the data. Apache Spark is created
to address the problems and drawbacks of
Map Reduce.

Spark

This is world’s fastest general-purpose, more
distributed, much parallel and completely open-source
cluster computing model. It is originally developed in

Fig. 3 — Completion Times

J SCI IND RES VOL 79 JULY 2020

634

2009 and opened in 2010 as an Apache project in the
UC Berkeley's AMPLab. This has fairly been since
lightning fast and in-memory processing. In recent
year, Hadoop could do Spark tool place and the whole
world witnessed with implementation of a standard
examination concerning organization of 100 terabytes
of data just in 23 minutes - the earlier world proof of
71 minutes. Developers from Spark conclude that
when properly processed massive data in memory
approach it can work effectively, and is lightning
faster means 100 times faster than Map Reduce also
10 times faster than disk. Spark simply provides more
scalability, more fault tolerance, reliability, and
several other features. Spark and its RDDs did reveal
in 2012 while the response to weaknesses in the
Map-Reduce cluster-computing model, which makes
a selective straight dataflow construction on
distributed applications. Map Reduce applications
gather input data during the disk source, then the map
takes responsibility for the data, degrade the outcome
of the map task, and store reduce task outcome on
disk. Spark's RDDs could perform similarly to
working set to distributed applications, which
contribute an intentionally reduced pattern of
distributed oriented shared memory. Apache Spark
has complete service of an architectural establishment
with the resilient distributed dataset (RDD), which
support read-only operation on a number of data items
circulated across the cluster, and implement in a fault-
tolerant manner.7

The Data frame API could be generated as a notion
on top of the RDD. In Apache Spark, the starting
interface that is especially an application-
programming interface (API) is called the RDD.
Spark strongly supports memory processing to
enhance the performance of applications for big data
analysis, but it could also execute traditional disk-
based treatment whenever data sets are far too large
for the system memory available. The RDD has
specifically designed so that customers can cover up a
great deal of computational complexity. It aggregates
data and partitions it across a whole server cluster
where it could be calculated, migrated or simply run
via an analytical paradigm in another data store.7
Spark greatly supports the deploying of iterative-
based techniques, which encourage their data set
various times during a loop service, and especially the
data analysis with complete interactive manner. Spark
achieves low latency of those applications, could be
degraded by various request of dimension compared

with Apache Hadoop Map Reduce execution.
Between the sorts of iterative techniques are the train-
based methods for machine learning operations,
which made the fundamental incentive for improving
Apache Spark. Apache Spark accomplishes higher
performance for both batch and streaming
information, just using a Direct Acyclic Graph like
state-of-the-art scheduler, optimization of a query,
and psychical execution tools.

Apache Spark always needs a cluster based
administrator and the latest parallel and more
distributed storage segment. During batch
control, spark recommends standalone mode, Hadoop
YARN, or Apache Mesos. During propagated
accommodation, Spark makes interface among an
extensive diversity, including Hadoop Distributed File
System (HDFS), and conventional solutions could be
executed.8 Apache Spark further establishes a pseudo-
distributed restricted method, normally utilized for
improvement or examination objectives, where
disseminated accommodation is not essential but the
general file operation could be utilized alternately in
different situations, typically, a single device
including single executor through one CPU kernel
operated apache spark.9

Spark libraries

The Spark Core engine processes mainly provide
high-level API and actually support a similar set of
related data-management and analysis tools. In
addition to spark core, a new package of most popular
code libraries to be used in data analysis and software
programs actually comes with an apache spark
environment. Spark SQL allows users to query stored
data in different applications in the relevant SQL
language. Spark streaming can simply build an
application to evaluate and present information even
in real-time. MLlib is a device trying to learn code
library that allows customers to use advanced
mathematical operations on spark information and
create new applications for those analyses. GraphX,
which is mostly a more graph-parallel numerical
computation online tool, actually built-in library.9
Spark typically, provides more than 80 operators,
which simply make parallel applications easy to
develop. Although from the Scala, Python, R and
SQL shells then you really could use it interactively.
Spark is enabled with a pack of libraries, along with
SQL and Data Frames, MLlib, GraphX, and Spark
Streaming.10 It streams processing, dynamic in nature,

DESHAI et al.: PROCESSING REAL WORLD DATASETS USING BIG DATA HADOOP TOOLS

635

more in-memory computation, reusable, fault tolerant,
real-time stream processing capable, lazy evaluation
in apache spark, supports multiple languages, active,
progressive and expanding spark community, support
for sophisticated analysis, integrated with Hadoop,
spark graphsx, and cost-effective.11–14 Spark and
Hadoop comparison in terms of Throughput and
latency are illustrated in Figs 4 and 5.

Conclusion
However, Map Reduce has many limitations,

which are significantly overcoming by Apache
latest lightning-fast stream processing framework is
a spark. The latest spark framework was finding to
be simple, more accurate, precise, specific,
reproducible, low latency, more throughput, fault-
tolerant, fastest batch and stream processing.
Apache spark is a flexible procedure and reduces
the drawbacks of Map Reduce.

References
1 Boyi S, Peng Y & Liangcun J, Big spatial data processing

with Apache Spark, 6th International IEEE Conference on
Agro-Geoinformatics, 2017, Available from: 10.1109/
Agro Geoinformatics.2017.8047039.

2 Elif Y, Mehmet A, Oya K, Alper, K & Umut T, Data mining
library for big data processing platforms: a case study-
sparkling water platform, 3rd International Conference on
Computer Science and Engineering, (UBMK), 2018.

3 Deshai N, Sekhar B V D, VenkataRamana S, S,
Srinivas K & Varma G P S, Big data hadoop map reduce
job scheduling: a short survey, in Information Systems
Design and Intelligent Applications by S Satapathy,
V Bhateja, R Somanah, XS Yang, R Senkerik. Advances
in Intelligent Systems and Computing, vol 862. Springer,
Singapore, 2019, 349-365, Available from: 10.1007/
978-981-13-3329-3_3.3

4 Deshai N, Sekhar B V D S, Venkataramana S, Chakravarthy
V V S S S & Chowdary P S R, Study with comparing big-
data handling techniques using apache hadoop map reduce
Vs apache spark, Int J Eng Technol, 7(4) (2018) 4839–4843,
Available from:10.14419/ijet.v7i4.1.15997

5 Syue F-H, Kshirsagar V A & Lo S-C, Improving
MapReduce load balancing in hadoop,14th International
Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD),(2018) Available
from: 10.1109/FSKD.2018.8687158

6 Deshai N, Venkataramana S & PardhaSaradhiVarma G,
Performance and cost evolution of dynamic increase hadoop
workloads of various datacenters, in Smart Intelligent
Computing and Applications by S Satapathy, V Bhateja,
S Das, Springer, Singapore, Smart Innovation, Systems and
Technologies, 105 (2019) 505–516. Available from:
10.1007/978-981-13-1927-3_54

7 Sumitra Srinivas K & Gangadhara Rao Kancharla, Feature
selection in big data using filter based techniques, 4th MEC
International Conference on Big Data and Smart City
(ICBDSC), 2019, 1–7, Available from:10.1109/
ICBDSC.2019.8645573 ·

8 Davor S & Ervin V, Apache spark as distributed middleware
for power system analysis, 25th Telecomm Forum (TELFOR)
(Belgrade, Serbia), 2017, Available from:10.1109/TEL
FOR.2017.8249455

9 Deshai N, SaradhiVarma G, P & Venkataramana S, A study
on analytical framework to breakdown conditions among
data quality measurement, International Conference on
Innovative Research in Science and Technology, 7, 2018
Available from: 10.14419/ijet.v7i1.1.9276

10 Deshai N, Venkataramana S, Hemalatha. I & Varma G P S,
A Study on big data hadoop map reduce job scheduling,
International Conference on Innovative Research in
Science and Technology, 7, 2017 Available from:
10.14419/ijet.v7i3.31.18202

11 Deshai N & SaradhiVarma G P, Big data challenges and
analytics processing over health prescriptions, J Adv Res
Dyn Control Syst, 15 (2017).

12 Georgios G, Big data software analytics with apache spark,
in IEEE/ACM 40th International Conference on Software
Engineering: Companion (ICSE-Companion), 2018.

13 Siva Kumar Seelam & Pattabiraman V, Acceleration
of hadoop MapReduce using in-memory computing,
International Conference on Recent Trends in
Advance Computing (ICRTAC), 2018, Available from:
10.1109/ICRTAC.2018.8679199

14 Sekhar B V D S, Prasard Reddy P V G D & Varma G P S ,
Performance of secured and robust watermarking using
evolutionary computing technique, J Glob Inf Manag (JGIM)
25(4) (2017) 61–79, Available from: RePEc:igg:jgim
00:v:25:y:2017:i:4:p:61-79

Fig. 4 — High Throughput of Spark

Fig. 5 — Low Latency of Spark

