A NOVEL APPROACH FOR MULTI VARIANT CLASSIFICATION OF MEDICAL DATA IN SHORT TEXT

M, supriya menon; Rajarajeswari, Pothuraju

Abstract

Data Mining Techniques has attained its momentum in several areas, and its efficient performance in decision support has outperformed and made it a reliable choice. The medical world is one such empirical domain in which a perfect decision at right time would turn out to be a lifesaver. Medical data figures out to be majorly multi-dimensional, where relevant feature extraction is a challenging factor. Several classification approaches like SVM, Decision Trees, and Naive Based are considered to handle these profound challenges. One such challenge discussed in our paper emphasizing on Medical decision support system with Machine Learning Methodology considering diseases and treatments with their semantic relations in the document of Pub med abstracts. The proposed Multi variant classification framework aims at reducing data into attributes using PCA Transformation infusion with an efficient classification Algorithm - CNB. Our computed results are comparatively successful in attaining ultimate outcomes concerning performance metrics like Accuracy, Precision, Recall, and Time. The strength of our work lies in presenting an efficient approach for elevating enhanced decisions in Health care.


Keyword(s)

PCA, CNB, Classification, Medical data.

Full Text: PDF (downloaded 774 times)

Refbacks

  • There are currently no refbacks.
This abstract viewed 1407 times