Development of enhanced 3D flower like Gd doped NiO (GNO) based LPG gas sensor
Abstract
The Liquefied Petroleum Gas (LPG) sensing properties of pure NiO and Gd doped NiO nanoparticles (Gd - 1%, 3%, and 5%) have been prepared by polyol method and student. The prepared nanoparticles have been characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Ultraviolet-visible spectroscopy, X-ray Photoelectron spectroscopy to study the structural, morphological, optical properties and electronic state of the prepared nanoparticles. XRD reveals that NiO nanoparticles have average crystallite size of about 12 - 26 nm and 3D flower like morphology with 2 - 3 μm size was recorded and TEM images reveals the presence of quasi spherical particles with nanosheets of thickness about 20 - 30 nm range. Optical absorption is found to be in UV region and bandgap energy in the range 3 - 3.6 eV. XPS confirms the presence Ni2+, Ni3+ ions, Gd3+ ions and presence of two oxygen species lattice oxygen and adsorbed oxygen. LPG sensing properties have been studied in detail for both pure NiO and GNO nanoparticles (1%, 3%, 5% Gd doped NiO) and it demonstrate that doped Gd enhance the sensitivity response LPG gas at operating temperature range 160°C to 260°C
Keyword(s)
Full Text: PDF (downloaded 536 times)
Refbacks
- There are currently no refbacks.